Lecture 39

Coherence

So far in our discussion of interference, we have assumed that the incident wave is a perfect

harmonic wave C€OS @t —> ! (complex analytic signal).

We have also assumed either that this wave emenated from a true point source (spherical wave)
or that it is a plane wave (esp. a spherical wave far from the point source).

Reality. Most sources are not point sources => no plane waves (although a laser operating on a

“single mode” is a pretty good approximation to one). Light from thermal or fluorescent sources
is emitted by many atoms, so the light emitted from different points on the source will have no
definite phase relationship.
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Reality. Even a single atom does not emit light with a definite wave! (Again, in a laser there is an

I”

“almost” definition phase, but we’ll consider only “classical” sources.) We saw this earlier in our

discussion of dephasing. It takes a classical dipole a time 7;‘1 to radiate away its power, but the

phase kept changing on a time scale of TZ' (and usually TZ' <Y1aa ) -Also, the amplitude

decreases with a time constant yr_ald .The net result is that light emitted by even a single atom

looks nothing like our ideal harmonic source COS wt
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Thus we must consider what happens to interference with real light sources, and what is the

frequency spectrum of light with this complicated (and generally chaotic) time dependence?

In order to simplify the discussion, we will break our treatment down into questions:

@ If you sit at one point in space, and you know the phase +amplitude at some time t, how
well can you predict the phase and amplitude at a later time t+7 ? This is called the temporal
coherence problem.

@ If you freeze a wave at one point in time, and you know the phase and amplitude at one
position in space, how well can you predict the phase and amplitude at some other point in
space? In other words — how well do you know the wavefront? This is called the spatial
coherence problem.

A nice simple picture of what we mean by these questions is shown in Lipson fig. 11.1(see next

page).

Temporal Coherence
We begin with a discussion of the temporal properties of light which is not perfectly coherent. An
intuitive picture of such waves is provided by Lipson Fig.11.2. We expect (and shall show below)

that such complicated waveforms in the time domain must be made up of many frequency

components in the frequency domain.

We already know the Fourier transform relation of the complex analytic signal
F{E(t)}=E(o)= ] E(tp dt
However, we also know that we can never directly measure the field amplitude in optics: our

detectors are simply much too slow .We need to see how the lack of coherence manifests itself in

real experiments.
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Temporal Coherence: intuitive ideas

1. Real sources < many atoms emitting independently with random phases + slightly differing
frequencies

e.g.3 ideal sources with different @,
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beats — random amplitude fluctuations when N become large
now add time-dep. Amplitude + fluctuating phase to each atom => randomly fluctuating

field E (1)

2. models of fluctuating light sources:
(i) Spectrum random phases
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time-averaged intensity (slow detector )
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(ii) Random series of wave groups



Arrival times t, random

Spectrum E (a)) = F[E (t)] = ;F[E (Hm )]

Fourier transforms: displacement in time domain = phase shift in freq. domain

= Power spectrum same as for 1 wave group
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How to measure temporal coherence?

Consider a (balanced) Michalson interferometer with a slow defector (i.e. so slow that if averages

over all possible temporal beats between different frequency components.)
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(i) If E (a)) = Eo5(a)— a)o) (perfectly coherent source )
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Fringe Visibility, Correlation Functions, and Degree of Coherence

It is extremely valuable to take a slightly different perspective on the interference pattern
produced by a Michelson interferometers; we want to think about the fringes in terms of the
fields directly. We go all the way back to the basic expression for the detector signal. We take an
input wave, split it, delay one arm, and recombine the fields

E, = E(t)/2+ E(t+r)/2 <

()= ) +{E@ o )+{(E (0)E(e)+ec) |
=[1+1, +2Re<E*(t)E(t+r)>]%

(1, =intensity in one arm)

* 1 t+r *
def. I'(r)=(E"(t)E(t+z)) =[BT ()E(trr)de
assumption: fields are stationary
i.e. the time average is independent of the origin of time
(the overall average intensity and the r.m.s. fluctuations are constant in time )

example of a stationary random field :
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Ex. of a nonstationary random field

We will consider only stationary random fields.

Then F(Z') depends only on the time delay, and not on what particular time interval is used to
measure it.

F(T):<E*(I)E(t+r)> is called the autocorrelation function (or sometimes the



self-coherence function) of the field E.
Now F(Z') has the units of intensity. It is frequently convenient to define a new dimensionless

quantity

Nothing that T'(0) =(E" (1) E(t+0)) = (|E (V) )= L.

(1 ()= 21+ Re(7(0))] = 2 1+ Re(7(+))]

Where |1= the intensity in each arm of the Michelson interferometer, and |0= the incident

intensity.

Heuristic argument

On P.305, by considering the interference in the frequency domain, we obtained

(1)) =22+ #(2)]

where y(7)= Iiof | (w)coswrdw = Ojo S(w)coswrdw
00 0
where S (a)) = spectral density of the input wave .

Now, in the time domain, we have obtained<| (2')>=|?°[1+ Re?(r)], so we have might

expect that we can equate the two expressions:
E"(t)E(t+r
Rey(r)= Re< ( ? ( )>
0
%
Thus we might expect to find

r(r):<E*(t)E(t+r)>=]jos(w)eimaa;

i.e. that the field autocorrelation and spectral density form a Fourier-transform pair. Indeed this

=iofo | (w)coswrdw
Iy 0

does turns out to be the case, and it is called the Weiner-Kintchine theorem.

An in-depth discussion of when the W-K theorem holds may be found in Mandel+ Wolf see 2.4.
We emphasize again the main physical requirements is that the fields be stationary. The basic
form of the “proof” is as follows.

Consider the quantity E* (a)) E (a)'), and introduce the Fourier transforms:



E'(w)E()=[[ “E"(t)e”E(t)e " dtdt = [JE" () E(t')e " dtdt’
If use time-average in the usual way over an interval T, then
<E* (w)E (a)')> = i;(E* (t)E (t’)> e (@t

Now if the field is stationary, so that the autocorrelation is independent of time origin, it must be

of the form

(E()E(t))=T(t-1)
(i.e. it depends only on the time difference 7 =t'—t).

(E"(0)E(e))=]7 dte ™ [” dt'T (t' ~t)e™ ™

(where we used @'t —wt = o (t'~t) + Ot —ot =o' (t' ~t)+ (@'~ )t )
Now z=t'—t = dt'=dr

(E"(0)E(e)) =] dte " [" de ()™ = 5 (&'~ ) [ de" (r)e ™"

Thus we have

S (a)) = <E* (a)) E (a))> =["d rl“(r)e‘i""” Weiner-Khinchin theorem

Thus measurement of the field autocorrelation, which is what the Michelson fringe pattern gives
directly, yields the power spectrum by Fourier transform. Conversely, if you know the spectrum,

then the field autocorrelation is determined.

Physical significance of }/(2’) :

| =|?°[1+ Rej(z)] :IEO[H?’(T)]

(i) for a perfectly coherent wave & (@) =35(w—,)= y(7)=Ccosa,r

!
Lo =2 [1+1] =14

|
| =-2[1-1]=0
o= 1]
Fringe visibility
V = Imax — Imin :I_Ozl
Imax + Imin IO
Gi) More generally , ]/(2') is of the form

‘}/(r)‘ COS @, ,i.e. a damped oscillatory function




V = ‘7(2’)‘ The coherence function is just the fringe visibility!

‘7 (Z')‘ =1=  complete coherence

‘7(2')‘ =0=  complete incoherence

0< ‘]/(T)‘ < 1= partial coherence

L =<E*(t)E(t+r)>
7( ) <|E|2>

An autocorrelation (suitably time-averaged) is also intuitively just a measure of how

well you can predict the value of the field at one time t+17 given the field at t.
Complete coherence means you can predict it with certainty. Partial coherence means

that there is some correlation between the fields at two different times, but the

correlation is not perfect; there may have been some phase shifts or amplitude

fluctuations in between.

The time over which a field is strongly coherent with itself, i.e. where the

autocorrelation has a significant amplitude, is called the coherence time.
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The quantity |C =C7,,, Iisoften called the (longitudinal) coherence length.

The guantitative characterization of the coherence time is a little bit arbitrary. There are two
principal ways of defining the coherence time in the literature.

@ Given T'(z)=(E"(t)E(t+7))

2
The coherence time may be defined as the root mean square width of|F| :




Trz ‘F(r)‘z dr
"

o 2
[ ‘F(z‘)‘ dr
Similarly, the effective spectral width of the light may be defined as

(0-5)2 S?(v)do

o — 8

(Av) =2 — S(v)= | I(r)e > dr
S (0)2 do -
0
Where
TUSZ (v)do
U= Ow = mean frequency
[S(v) dv
0

1)
And S (U) is the spectral density vs. freq. v = 2—
T

e.g.

s av

—> 2/
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It is possible to show using standard theorems on Fourier transform relations (see Mandel +Wolf

1
P4.3.3) that these satisfy 7, - Av > 4— .
Vs

Equality is obtained only if the spectrum is a Gaussian. This definition of the coherence time is
useful generally when the light is quasi-monochromatic and the spectrum has a
“reasonably well-defined peak”

(ii) Another common definition is to use the normalized degree of coherence

” _r(z-)_<E*(t)E(t+r)>
7/( )_F(O)_ <|E|Z>

And define the coherence time as
7, =i‘;7(r)‘2dr

It turns out (see Mandel +Wolf 4.3.3 for proof) that the width can be written as

,_ re)
gS(U)zdl)

A



It should be noted that the above two definitions of the coherence time give roughly similar

numbers for quasi-monochromatic light , but can give significantly different result for

complicated , broad-band light .

Spatial Coherence

The idea of spatial coherence of a light wave is closely analogous to the concept of temporal
coherence. The fundamental issue is: at a frozen instant in time, given a field at one point in

space, how well can you predict what it will be in another point in space?

example: complete spatial coherence

- Consider emission from a point source (which may emit light with a randomly fluctuating
field!)

Se) ) )) _

Clearly, F’1 and P2 are on the same wavefront, so there is complete spatial coherence

between these two points.

T i)y
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Example: complete spatial incoherence

- Consider emission from an extended source of dipoles which oscillate with random phases

and/or amplitudes (uncorrelated dipoles )
- Look at the wave near the source



Clearly there is no correlation between the waves at F"1 and P2 => complete incoherence.

Note that, just as we did for the case of temporal coherence, we phrase the question of
spatial coherence in terms of the presence (or absence) of correlations between fields, which can

be quantified by the means of correlation functions.

We thus extend the definition of I" to:
(7,75, 7)=(E (Rt E(F,t+7))
(Again, for stationary fields this is independent of t .)

I['(F,,F,,7) = mutual coherence function.

Similarly, we can extend }7(2) to
I N (1))
JIr (5.0 (5. r..0)

Clearly, temporal and spatial coherence are connected by propagation, but we can consider

="complex degree of coherence “

7(%.5.7)

spatial coherence to be measured by

T'(F,5,0) or7(F,F,0).

Note that in general 0 < |}7| <1, 0= complete incoherence, and 1= complete coherence.

Now, it might seem, given our picture on the previous page, that spatial coherence is always
negligible when the source is extended and consists of a large number of uncorrelated dipole
emitters. Life turns out to be more interesting than that, however.

Surprise: the spatial coherence of light increases with propagation.

A very naive argument can make this statement at least sound plausible: “ at a large enough

distance , any source looks like a point source!”



I

At F’1 and Pz, the multiple sources clearly give rise to_ temporal incoherence , but since all the

waves look like spherical waves centered on S (which looks negligibly small), the wave has
acquired spatial coherence!

A somewhat more sophisticated argument is given in Mandel +Wolf P 4.2.2. Consider the

emission from two uncorrelated point sources Sland SZ, and look at the net field at two

observation points P, and P,.

g,Lﬁ P‘_

If |R11 - R12| <Cr, ,then
E/ (t)=F (t)e‘“‘l (¢, =0 if they are on the same wave front )
Similarly |R21 - R22| <cr,=E, (t)=E, (t)ei(’iz
(the phases ¢ are just fixed by geometry — the positions of F’1 and P2 - and are not

fluctuating variables). (@, = |F\’11 - R12| k)

E(R)=E(t)+E,(1)

E(R,)=E/ (t)+E, (t)=E (t)e" +E,(t)e*

S, and S, uncorrelated=> E, and E, uncorrelated



(E, (1)E,(t))=0

However, the total fields at F’1 and F’2 are correlated , since the sum of the two waves at each

point looks nearly the same .
r(P,P,0)=([E +E, [E€* +Ee* )
=(E'Ee")+(E,'E,e*) «—
H{ERe)+{ERg)
0 0
Because spatial coherence arises from extended sources on propagation, it is intimately

connected with the theory of diffraction. The propagation of spatial correlations is described by
the Van Cittert- Zermike theorem. We don’t have the tools yet to develop this theory any further,

NOT =0 !

but we can gain considerable insight with a simple calculation.

Q: how to measure spatial coherence?

A: just like we did with temporal coherence — with an interferometer.

Of course, if we want to measure spatial correlations, we should use an interferometer which
divides a wavefront at different points in space .This is just what Young’s double-slit arrangement

does.
- Recall plane wave normally incident on a double slit:
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- Zero-order maximumat y =0 (6=0)

- First-order maximum when OPD= A

hsin@:hezﬂ:G:%

(position on screen: tan@ =@ = % = y=DO= D% )

Now consider a plane wave incident at an angle ¢ :



y &1

@, .
There is now a phase difference & =——hsing between the two slit, so the zero-order max.
c

now occurs when

—hsing+hsind=0 or O=+¢
1 order: —h¢+h9=/1:>0:%+¢

Note that the maxima of the tilted fringe pattern exactly overlap the_minima of the ¢ =0

(normal) fringe pattern when .

_e A

_2h Pt

When this occurs, the interference pattern disappears!

N

Now we can consider light from two source points on an extended source:

S, =>fringe pattern centered on P,



S, =>fringe pattern centeredon P,

A
=—=> pattern disappears
2h

by L

Geometry : tan¢=¢:?2_ﬁ

= Pattern disappears when the source size is equal or larger than

2 _[7R_

L=2Rg=2R-2 = L
2h | h

There are other ways of phasing this which are perhaps more general:

A
(i) o= i% => fringes disappear => no spatial coherence at the two slits

= Source is coherent if it subtends an angle smaller than A(/) = F

(ii) The converse of this is perhaps even more useful. If the source subtends an angle A¢ ,

then the transverse coherence length is given by

_ A
-

l,=h

X (“coherence area ~ |t2)

Since this is the slit separation at which the interference pattern would disappear, where
we consider h now to be a variable.

Note as A — 0, source looks more +more like a point source, and the transverse

coherence length becomes very large, as expected.
This is the main result of our discussion.

Stellar Interferometer

Michelson realized that the above relation could be used to measure the angular size of
stars. The fundamental idea is to vary h, the distance between two sampled points on
the wavefronts, and see at what value of h to the fringe disappear.

The naive approach would be to just use Young’s arrangement; the problem is that , for
large h, the fringe spacing would get too small, and the amount of light near the zero
order would also be too small.

Michalson’s trick: build an interferometer with a fixed slit * separation h2 (*or pinhole),

But which can sample a wavefront with separation h = h1



- Fringe spacing determined by h2

- Fringe contrast determined by h1

- See Guenther for derivation of the intensity on the screen:
. X
I, ~2l, {2— kh,Agsin(kh, B)}

Ex, star Betelgeuse (red giant in Orion)

A¢ ~ 0.047 sec. of are corresponds to h, on order of 2.5m
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Fig. 10.1 Schematic diagram of the experimental arrangement.
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OBSERVATION PLANE (x)

OPTICAL FIEL

with the diffraction pattern of a circular aperture. We assume that by the use of a
microdensitometer we show that it has the form [see Eq. (2.19)]:

2J,(x)

X

2

(10.3)

where x is a normalized radial coordinate. We can, therefore, conclude that:

I. The amplitude distribution across the aperture P, is uniform.
2. The radiation across the aperture is essentially coherent.

The second aperture, P,, alone gives a similar result. Now when the two
apertures are opened together at their closest separation, two-beam interference
fringes are observed that are formed by the division of the incident wavefront by
the two apertures. At this closest separation, the fringes are extremely sharp [see
Fig. 10.2(a)]. As the separation of the apertures increases, the photographic

00000

(a) (b) (c) (d) (e) (f)
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Fig. 10.3 Intensity plots of typical results of Fig. 10.2.

record looks like the results shown in Figs. 10.2(a) through (o). The fringes
essentially disappear at (f) only to reappear faintly in (g) through (1), only to fade
againat (m), and reappear very faintlyat (n) and (o). Intensity plots correspond-
ing to a typical sample of these photographic records are shown in Fig. 10.3.
From the results of Fig. 10.2, the following facts are recorded. As the separation
of Py and P, increases,

1. thefringe spacing decreases,

2. the minima are never zero,

3. therelative heights of the maxima above the minima steadily decrease until (f)
where they start to increase,

4. the absolute heights of the maxima decrease and the heights of the minima
increase until (f),

5. eventually the fringes disappear, at which point the resultant intensity is just
twice the intensity observed with one aperture alone, and

6. the fringes reappear with increasing separation but the fringes contain a
central minimum not a central maximum.

Items | through 5 may be summarized by defining a visibility ¥ [first intro-
duced by Michelson for this very purpose and previously introduced in Chapter 7
as Eq. (7.2)]:

Imﬂx - ll'i'!!l-ﬂ
= _+_fm:'; . (10.4)

!ma.l'

If this visibility function is plotted against the separation of theapertures P, and

e for the example given in Fig. 10.2, a curve similar to that shown in Fig. 10.4




