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Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

李晓光 教授
中国科学技术大学物理系, 合肥 230026

Prof. Li Xiao-Guang
Department of Physics, University of Science and Technology of China,
Hefei 230026, China

沈元壤 教授 Prof. Shen Yuan-Rang
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

王亚愚 教授
清华大学物理系, 北京 100084

Prof. Wang Ya-Yu
Department of Physics, Tsinghua University, Beijing 100084, China

王玉鹏 研究员
中国科学院物理研究所, 北京 100190

Prof. Wang Yu-Peng
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

王肇中 教授 Prof. Wang Zhao-Zhong
Laboratory for Photonics and Nanostructures(LPN) CNRS–UPR20,
Route de Nozay, 91460 Marcoussis, France

闻海虎 教授
南京大学物理学院系, 南京 210093

Prof. Wen Hai-Hu
School of Physics, Nanjing University, Nanjing 210093, China

徐至展 研究员, 院士
中国科学院上海光学精密机械研究所,
上海 201800

Prof. Academician Xu Zhi-Zhan
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of
Sciences, Shanghai 201800, China

许岑珂 助理教授 Assist. Prof. Xu Cen-Ke
Department of Physics，University of California, Santa Barbara, CA 93106,

USA
薛其坤 教授, 院士

清华大学物理系, 北京 100084
Prof. Academician Xue Qi-Kun
Department of Physics, Tsinghua University, Beijing 100084, China

叶 军 教授 Prof. Ye Jun
Department of Physics, University of Colorado, Boulder,
Colorado 80309-0440，USA

张振宇 教授 Prof. Z. Y. Zhang
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6032, USA

2015–2020
Prof. J. Y. Rhee Department of Physics, Sungkyunkwan University, Suwon, Korea
Prof. Robert J. Joynt Physics Department, University of Wisconsin-Madison, Madison, USA
程建春 教授

南京大学物理学院, 南京 210093
Prof. Cheng Jian-Chun
School of Physics, Nanjing University, Nanjing 210093, China

戴 希 研究员
中国科学院物理研究所，北京 100190

Prof. Dai Xi
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

郭光灿 教授, 院士

中国科学技术大学物理学院,
合肥 230026

Prof. Academician Guo Guang-Can
School of Physical Sciences, University of Science and Technology of China,
Hefei 230026, China

刘朝星 助理教授 Assist. Prof. Liu Chao-Xing
Department of Physics, Pennsylvania State University, PA 16802-6300, USA

刘 荧 教授
上海交通大学物理与天文系,
上海 200240

Prof. Liu Ying
Department of Physics and Astronomy, Shanghai Jiao Tong University,
Shanghai 200240, China

龙桂鲁 教授
清华大学物理系, 北京 100084

Prof. Long Gui-Lu
Department of Physics, Tsinghua University, Beijing 100084, China

牛 谦 教授 Prof. Niu Qian
Department of Physics, University of Texas, Austin, TX 78712, USA

欧阳颀 教授, 院士
北京大学物理学院, 北京 100871

Prof. Academician Ouyang Qi
School of Physics, Peking University, Beijing 100871, China

孙秀冬 教授
哈尔滨工业大学物理系, 哈尔滨 150001

Prof. Sun Xiu-Dong
Department of Physics, Harbin Institute of Technology, Harbin 150001, China

童利民 教授
浙江大学光电信息工程学系,
杭州 310027

Prof. Tong Li-Min
Department of Optical Engineering, Zhejiang University,
Hangzhou 310027, China

童彭尔 教授
香港科技大学物理系, 香港九龍

Prof. Tong Penger
Department of Physics, The Hong Kong University of Science and Technology,
Kowloon, Hong Kong, China

王开友 研究员
中国科学院半导体研究所, 北京 100083

Prof. Wang Kai-You
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083,
China

魏苏淮 教授 Prof. Wei Su-Huai
National Renewable Energy Laboratory, Golden, Colorado 80401-3393, USA

解思深 研究员, 院士
中国科学院物理研究所, 北京 100190

Prof. Academician Xie Si-Shen
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

叶朝辉 研究员, 院士
中国科学院武汉物理与数学研究所,
武汉 430071

Prof. Academician Ye Chao-Hui
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences,
Wuhan 430071, China

郁明阳 教授 Prof. Yu Ming-Yang
Theoretical Physics I, Ruhr University, D-44780 Bochum, Germany

张富春 教授
香港大学物理系, 香港

Prof. Zhang Fu-Chun
Department of Physics, The University of Hong Kong, Hong Kong, China

张 勇 教授 Prof. Zhang Yong
Electrical and Computer Engineering Department, The University of North
Carolina at Charlotte, Charlotte, USA

郑 波 教授
浙江大学物理系, 杭州 310027

Prof. Zheng Bo
Physics Department, Zhejiang University, Hangzhou 310027, China

周兴江 研究员
中国科学院物理研究所, 北京 100190

Prof. Zhou Xing-Jiang
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

编编编 辑辑辑 Editorial Staff
王久丽 Wang Jiu-Li 章志英 Zhang Zhi-Ying 蔡建伟 Cai Jian-Wei 翟 振 Zhai Zhen 郭红丽 Guo Hong-Li



Chin. Phys. B Vol. 24, No. 5 (2015) 050507

TOPICAL REVIEW — Precision measurement and cold matters

Superfluidity of Bose Einstein condensates in ultracold atomic gases∗

Zhu Qi-Zhong(朱起忠)a) and Wu Biao(吴 飙)a)b)c)†

a)International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
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Liquid helium 4 had been the only bosonic superfluid available in experiments for a long time. This situation was
changed in 1995, when a new superfluid was born with the realization of the Bose–Einstein condensation in ultracold
atomic gases. The liquid helium 4 is strongly interacting and has no spin; there is almost no way to change its parameters,
such as interaction strength and density. The new superfluid, Bose–Einstein condensate (BEC), offers various advantages
over liquid helium. On the one hand, BEC is weakly interacting and has spin degrees of freedom. On the other hand, it is
convenient to tune almost all the parameters of a BEC, for example, the kinetic energy by spin–orbit coupling, the density
by the external potential, and the interaction by Feshbach resonance. Great efforts have been devoted to studying these
new aspects, and the results have greatly enriched our understanding of superfluidity. Here we review these developments
by focusing on the stability and critical velocity of various superfluids. The BEC systems considered include a uniform
superfluid in free space, a superfluid with its density periodically modulated, a superfluid with artificially engineered spin–
orbit coupling, and a superfluid of pure spin current. Due to the weak interaction, these BEC systems can be well described
by the mean-field Gross–Pitaevskii theory and their superfluidity, in particular critical velocities, can be examined with the
aid of Bogoliubov excitations. Experimental proposals to observe these new aspects of superfluidity are discussed.

Keywords: superfluidity, Bose–Einstein condensation, ultracold atomic gases, Gross–Pitaevskii theory

PACS: 05.30.Jp, 03.75.Mn, 03.75.Kk, 71.70.Ej DOI: 10.1088/1674-1056/24/5/050507

1. Introduction

Superfluidity, as a remarkable macroscopic quantum phe-
nomenon, was first discovered in the study of liquid helium 4
in 1938.[1,2] Although it is found theoretically that superfluid-
ity is a general phenomenon for interacting boson systems,[3]

liquid helium had been the only bosonic superfluid available
in experiments until 1995. In this year, thanks to the advance
of laser cooling of atoms, the Bose–Einstein condensation of
dilute alkali atomic gases was realized experimentally;[4] a
new superfluid, Bose–Einstein condensate (BEC), was born.
This addition to the family of superfluids is highly non-trivial
as BECs offer various advantages over liquid helium that can
greatly enrich our understanding of superfluidity.

Great deal of work has been done to explore the prop-
erties of liquid helium as a superfluid.[5] However, these ef-
forts have been hindered by limitations of liquid helium. As a
liquid, the superfluid helium is a strongly-interacting system,
which makes the theoretical description difficult. At the same
time, no system parameters, such as density and interaction
strength, can be tuned experimentally. And, helium 4 has no
spin degrees of freedom.

BECs are strikingly different. Almost all the parame-
ters of a BEC can be controlled easily in experiments: its

kinetic energy, density, and the interaction between atoms
can all be tuned easily by engineering the atom–laser interac-
tion, magnetic or optical traps, and the Feshbach resonance,
respectively.[6] In addition, by choosing the atomic species
and using optical traps to release the spin degrees of freedom,
one can also realize various types of new superfluids, includ-
ing the spinor superfluid[7,8] and the dipolar superfluid.[9] All
these are impossible with liquid helium. Moreover, as most
ultracold gases are dilute and weakly-interacting, controllable
theoretical methods are available to study these superfluids in
detail.

In this review we mainly discuss three types of bosonic
superfluids: superfluid with periodic density, superfluid with
spin–orbit coupling, and superfluid of pure spin current. The
focus is on the stability and critical velocities of various su-
perfluids. For a uniform superfluid, when its speed exceeds a
critical value, the system suffers Landau instability and super-
fluidity is lost. When the superfluid moves in a periodic poten-
tial, with large enough quasi-momentum, new mechanism of
instability, i.e., dynamical instability, emerges. This instabil-
ity usually dominates the Landau instability as it occurs on a
much faster time scale. The periodic density also brings an-
other twist: the superfluidity can be tested in two different
ways, which yield two different critical velocities. For a su-

∗Project supported by the National Basic Research Program of China (Grant Nos. 2013CB921903 and 2012CB921300) and the National Natural Science
Foundation of China (Grant Nos. 11274024, 11334001, and 11429402).

†Corresponding author. E-mail: wubiao@pku.edu.cn
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perfluid with spin–orbit coupling, there is a dramatic change,
namely, the breakdown of the Galilean invariance. As a result,
its critical velocity will depend on the reference frame. The
stability of a pure spin current is also quite striking. We find
that the pure spin current in general is not a superflow. How-
ever, it can be stabilized to become a superflow with quadratic
Zeeman effect or spin–orbit coupling. Related experimental
proposals are discussed.

The paper is organized as follows. In Section 2, we dis-
cuss briefly the basic concepts related to the understanding of
superfluidity, including Landau’s theory of superfluidity, mean
field Gross–Pitaevskii equation, and Bogoliubov excitations.
These concepts are illustrated with the special case of a uni-
form superfluid. We then apply these general methods to study
in detail the superfluid in periodic potentials in Section 3, the
superfluid with artificially engineered spin–orbit coupling in
Section 4, and finally the superfluid of pure spin current in
Section 5. In these three superfluids, special attention is paid
to their excitations, stabilities, and critical velocities. We fi-
nally summarize in Section 6.

2. Basic concepts of superfluidity
2.1. Landau’s theory of superfluidity

Superfluid is a special kind of fluid which does not suffer
dissipation when flowing through a tube. It loses its super-
fluidity only when its speed exceeds a certain critical value.
The superfluidity of liquid helium 4 was first explained by
Landau.[10] He considered a superfluid moving inside a sta-
tionary tube with velocity 𝑣. Since the system is invariant
under the Galilean transformation, this scenario is equivalent
to a stationary fluid inside a moving tube. If the elementary
excitation in a stationary superfluid with momentum 𝑞 has en-
ergy ε0(𝑞), then the energy of the same excitation in the back-
ground of a moving fluid with 𝑣 is ε𝑣(𝑞) = ε0(𝑞)+𝑣 ·𝑞. A
fluid experiences friction only through emitting elementary ex-
citations, and it is a superfluid if these elementary excitations
are energetically unfavorable. In other words, a superfluid sat-
isfies the constraint ε𝑣(𝑞) > 0. It readily leads to the well-
known Landau’s criterion for superfluid,

v < vc =

(
ε0(𝑞)

|𝑞|

)
min

. (1)

Here vc is the critical velocity of the superfluid, which is de-
termined by the smallest slope of the excitation spectrum of a
stationary superfluid.

Another way of deriving the formula of critical velocity is
from the point view of Cerenkov radiation. Consider a macro-
scopic impurity moving in the superfluid generates an excita-
tion. According to the conservations of both momentum and
energy, we should have

m0𝑣i = m0𝑣f +𝑞, (2)

m0𝑣
2
i

2
=

m0𝑣
2
f

2
+ ε0(𝑞), (3)

where m0 is the mass of the impurity, 𝑣i and 𝑣f are the initial
and final velocities of the impurity, respectively. The above
two conservations (2) and (3) cannot be satisfied simultane-
ously when

v≈ |𝑣i| ≈ |𝑣f|< vc =

(
ε0(𝑞)

|𝑞|

)
min

. (4)

The critical velocity vc here has the same expression as that ob-
tained from Landau’s criterion. If the excitations are phonons,
i.e., ε0(𝑞) = c|𝑞|, then vc < c. This means that the impu-
rity could not generate phonons in the superfluid and would
not experience any viscosity when its speed was smaller than
the sound speed. This is in fact nothing but the Cerenkov
radiation,[12–14] where a charged particle radiates only when
its speed exceeds the speed of light in the medium. There is
also interesting work discussing the possible deviation from
this relation.[16]

These two different ways of derivation are equivalent
when the system has the Galilean invariance. By transform-
ing to another reference frame illustrated in Fig. 1(b), the su-
perfluid can be viewed as being dragged by a moving tube.
We then replace the moving tube with a macroscopic impurity
moving inside the superfluid as shown in Fig. 1(c). Conse-
quently, for systems with Galilean invariance, the critical ve-
locity of a superfluid moving inside a tube without experienc-
ing friction is just the critical velocity of an impurity moving in
a superfluid without generating excitations. For systems with-
out the Galilean invariance, such an equivalence is lost as we
will see later with the spin–orbit coupled BEC.

superfluid v

v

superfluid

superfluid
v

(a) (b)

(c)

Fig. 1. (a) A superfluid moves inside a stationary tube. (b) The superfluid
is dragged by a tube moving at the speed of v. (c) An impurity moves at
v in the superfluid. The two-way arrow indicates the equivalence between
different scenarios.

For ultracold bosonic gases, the low-energy excitation is
phonon, linear with respect to momentum 𝑞, thus the critical
speed of this superfluid is just the sound speed. Taking into
account the non-uniformity of the trapped gas, the critical ve-
locity measured in experiments agrees well with the value pre-
dicted by Landau’s theory.[17] For liquid helium 4, as there is
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another kind of elementary excitations called rotons, the crit-
ical speed of superfluid helium 4 is largely determined by the
roton excitation, much smaller than its sound speed. Never-
theless, the critical velocity measured in experiments is still
one order of magnitude smaller than the value predicted by
the theory.[18] Therefore, it is remarkable that Landau’s pre-
diction of critical velocity was experimentally confirmed with
BEC almost six decades after its invention.

One remark is warranted on Landau’s theory of superflu-
idity. Landau’s criterion (1) of critical speed does not apply
for many superfluids. However, Landau’s energetic argument
for superfluidity is very general and can be applied to all the
cases considered in this review. We shall use this argument to
determine the critical speeds of various superfluids.

2.2. Gross–Pitaevskii equation and Bogoliubov excitation

As liquid helium 4 is a strongly-interacting system, the
theoretical calculation of its excitation spectrum is challeng-
ing. However, for a dilute ultracold bosonic gases, convenient
yet precise approximations can be made to determine its exci-
tation in theory. Due to the dilute nature and short-range inter-
action, the interaction between atoms can be approximated by
a contact interaction. Furthermore, for low energy scattering
of bosonic atoms, the s-wave scattering channel dominates.
Hence, as a good approximation, the actual complex interac-
tion between atoms is replaced by an effective s-wave contact
interaction, i.e., U(𝑟1,𝑟2) = 4π h̄2aδ (𝑟1−𝑟2)/M, where a is
the s-wave scattering length. At zero temperature, assume all
the particles condense into the same orbit ψ(𝑟), then its evo-
lution is governed by the mean field Gross–Pitaevskii (GP)
equation,[19]

ih̄
∂ψ(𝑟, t)

∂ t
=− h̄2∇2

2M
ψ +V (𝑟)ψ + c|ψ|2ψ, (5)

where V (𝑟) is the trapping potential or other external poten-
tial, and c = 4π h̄2a/M is the interaction parameter or coupling
constant. The GP energy functional reads

E [ψ,ψ∗] =
∫

d𝑟
[
− h̄2

2M
|∇ψ|2 +V (𝑟)|ψ|2 + c

2
|ψ|4

]
. (6)

Note that here the wave function ψ is normalized to the total
particle number N. The approximation we make here is the
mean-field approximation, and the interaction between atoms
is replaced by an effective mean-field potential. The validity
of the approximation usually depends on the condensed frac-
tion. For weakly interacting dilute bosonic gases near zero
temperature, the condensed fraction can be more than 90 per-
cent. In these situations, the GP equation works well. It has
been used to calculate the collective excitations of trapped
BEC, as well as vortex dynamics. Pretty good agreement is
achieved between theory and experiment. With a stochas-
tic term describing the effect of thermal atoms, the modified

stochastic GP equation can also simulate BEC systems at fi-
nite temperature.[20,21] In addition, for atoms with spin, one
can also derive a multi-component GP equation to describe a
spinor superfluid.[22]

The stationary state the GP equation describes is a zeroth-
order approximation in some sense. It only takes into ac-
count the interaction between the condensed particles. The
first-order approximation is to take into account the interac-
tion between the condensed particles and un-condensed parti-
cles. This is settled by the Bogoliubov theory of elementary
excitations.[23] The standard Bogoliubov theory is to diagonal-
ize the mean-field Hamiltonian by the Bogoliubov transforma-
tion. Here we adopt an equivalent yet more convenient way
to deal with this problem in inhomogeneous systems. For a
stationary state ψ(𝑟, t) that satisfies the GP equation, we con-
sider some small time-dependent perturbations δψ(𝑟, t) added
to this stationary state. The perturbed state Ψ = ψ + δψ also
satisfies the GP equation,

ih̄
∂Ψ(𝑟, t)

∂ t
=− h̄2∇2

2M
Ψ +V (𝑟)Ψ + c|Ψ |2Ψ . (7)

Expanding this equation to first order in the perturbation δψ ,
one arrives at the equation of motion of the perturbation
δψ(𝑟, t),

ih̄
∂δψ

∂ t
= − h̄2

2M
∇2

δψ +V (𝑟)δψ

+ 2c|ψ|2δψ + cψ
2
δψ
∗, (8)

and its complex conjugate partner. Assume the state be-
fore perturbation is a stationary state with the wave func-
tion ψ(𝑟, t) =

√
n(𝑟)e−iµt/h̄, and write the perturbations as

δψ(𝑟, t) =
√

n(𝑟)e−iµt/h̄[u(𝑟)e−iωt − v∗(𝑟)e iωt ], then we
arrive at a pair of equations that u(𝑟) and v(𝑟) satisfy,

M

(
u(𝑟)
v(𝑟)

)
= h̄ω

(
u(𝑟)
v(𝑟)

)
, (9)

where the matrix M is given by

M =

(
H0 −cn(𝑟)

cn(𝑟) −H0

)
, (10)

with H0 = −h̄2∇2/2M +V (𝑟)− µ + 2cn(𝑟). By diagonaliz-
ing M , one obtains two sets of solutions, but only the solu-
tion satisfying the constraint

∫
d𝑟
(
|u(𝑟)|2−|v(𝑟)|2

)
> 0 rep-

resents physical excitations. Note that since the characteris-
tic matrix M is not hermitian, its eigenvalues are not neces-
sarily real. If its eigenvalue ε = h̄ω has nonzero imaginary
part, the perturbation δψ(𝑟, t) =

√
n(𝑟)e−iµt/h̄[u(𝑟)e−iωt −

v∗(𝑟)e iωt ] will grow exponentially with time, signaling that
the state before perturbation suffers dynamical instability. If
its eigenvalue is real but negative, elementary excitations as-
sociated with the perturbations will be energetically favorable
and superfluidity is lost, which is called Landau instability. For
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the excitations of repulsive Bose gases without external po-
tentials, the low-energy excitations must be non-negative and
gapless from the Hugenholtz–Pines theorem.[24]

As a specific example, we apply the above formalism to
the uniform Bose gas, namely, putting V (𝑟) = 0. The wave
function before perturbation is just ψ =

√
ne−iµt/h̄, and the

perturbation has this form u(𝑟) = u𝑞 e i𝑞·𝑟/
√

V , and v(𝑟) =
v𝑞 e i𝑞·𝑟/

√
V . Plugging these wave functions into the above

equations, one immediately obtains the excitation spectrum for
a uniform Bose gas,

εq =
√

ε0
q
(
ε0

q +2cn
)
, (11)

where ε0
q = h̄2q2/2M is the single particle spectrum. At

long-wavelength or small momentum q, the excitation has the

asymptotic form of εq ∼ q
√

h̄2nc/M. This is nothing but

phonon excitation, and
√

nc/M is just the speed of sound.
From Landau’s theory of critical velocity, we conclude that
the critical velocity of a uniform superfluid Bose gas is just
the sound speed.

The method of mean-field approximation and Bogoliubov
transformation is very general, and applies in other more com-
plicated situations. In the following discussion, we use this
method to study three types of superfluids, superfluid in a pe-
riodic potential, superfluid with spin–orbit coupling and super-
fluid of pure spin current.

3. Periodic superfluid
It is hard to change the density of helium 4 as it is a liquid.

In contrast, we can easily modulate the density of a BEC which
is a gas. When we put a BEC in an optical lattice, we obtain a
superfluid whose density is periodically modulated. One can
even further periodically modulate the interatomic interaction
of the BEC with optical Feshbach resonance.[25] Supersolid
helium 4 may be also regarded as a periodic superfluid as it can
be viewed as some superfluid defects (most likely vacancies)
flowing in a helium solid lattice.[26,27] In this section, we use a
BEC in an optical lattice as an example to examine the proper-
ties of a periodic superfluid. Compared to the uniform super-
fluid in free space, a new type of instability, i.e., the dynamical
instability is found when the quasi-momentum k of the super-
fluid is larger than a critical value. Usually the dynamical in-
stability dominates the accompanying Landau instability as it
happens on a much faster time scale.[28] The presence of the
periodic potential also brings along another critical velocity.

3.1. Stability phase diagram

Now we study the superfluidity of a BEC in a periodic
potential,[29,30] which is provided by the optical lattice in cold
atom experiments. For simplicity, we consider a quasi-one-
dimensional BEC, confined in a cigar-shaped trap. We treat

the system with the mean-field theory and obtain the grand-
canonical GP Hamiltonian as

H =
∫

∞

−∞

dx
[

ψ
∗
(
−1

2
∂ 2

∂x2 + vcosx
)

ψ

+
c
2
|ψ|4−µ|ψ|2

]
, (12)

where all the variables are scaled to be dimensionless with re-
spect to a set of characteristic parameters of the system, the
atomic mass M, the wave number kL of the laser light gen-
erating the optical lattice, and the average density n0 of the
BEC. The chemical potential µ and the strength of the peri-
odic potential v are in units of 4h̄2k2

L/M, the wave function ψ

is in units of
√

n0, x is in units of kL/2, and t is in units of
M/4h̄2k2

L. The interaction constant is given by c = πn0as/k2
L,

where as > 0 is the s-wave scattering length.
For non-interacting case (c= 0), diagonalizing the Hamil-

tonian will give the standard Bloch waves and energy bands.
When the mean-field interaction is turned on (c 6= 0), in princi-
ple the Hamiltonian allows for other types of solutions which
have no counterpart in the non-interacting case.[31,32] Here
we focus on the solutions which still have the form of Bloch
waves, i.e., ψk(x) = e ikxφk(x), where φk(x) has the same pe-
riod with the optical lattice. φk(x) can be found by extremiz-
ing the Hamiltonian above.[30] The solution found in this way
should satisfy the stationary GP equation with periodic poten-
tial,

− 1
2

∂ 2

∂x2 ψ + vcosxψ + c|ψ|2ψ = µψ. (13)

To determine the superfluidity of these Bloch states,
we must consider elementary excitations around these Bloch
states, and check whether the excitation energy is always pos-
itive. Positive excitation energy indicates that the Bloch state
is a local energy minimum, and it is stable against small per-
turbations. Due to the periodicity of the Bloch wave, the per-
turbations can be decomposed into different decoupled modes
labeled by q,

δφk(x,q) = uk(x,q)e iqx + v∗k(x,q)e−iqx, (14)

where q ranges between −1/2 and 1/2, and the perturbation
functions uk and vk are of periodicity of 2π .

Following the similar method in Section 2.2, we linearize
the GP equation above to obtain the Bogoliubov equation that
uk and vk satisfy

Mk(q)
(

uk
vk

)
= εk(q)

(
uk
vk

)
, (15)

where

Mk(q) =
(

L (k+q) −cφ 2
k

cφ ∗2k −L (−k+q)

)
, (16)

with

L (k) =−1
2

(
∂

∂x
+ ik

)2

+ vcosx−µ +2c|φk|2. (17)
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This eigenvalue equation has two sets of solutions, with one
corresponding to physical excitations, which is mostly phonon
excitation, and the other called anti-phonon that is not physi-
cal. If the physical excitation εk(q) is positive, the Bloch wave
ψk is a local minimum, and the system will have superfluidity.
Otherwise, the system suffers Landau instability or dynami-
cal instability, depending on whether εk(q) is real negative or
complex.

In the case of free space v= 0, the Bloch state ψk becomes
a plane wave e ikx. Then the operator Mk(q) becomes

Mk(q) =
(

q2/2+ kq+ c −c
c −q2/2+ kq− c

)
, (18)

and we recover the excitations in the uniform case

ε±(q) = kq±
√

cq2 +q4/4. (19)

We immediately see that the excitation energy is always real,
which means that the BEC flows in free space are always dy-
namically stable.

When there is a periodic potential, the situation is dramat-
ically different, where the excitation energy can have imagi-
nary part, signaling the dynamical instability of the system. By
numerically solving the Bogoliubov equation above, we show
the stability phase diagrams for BEC Bloch waves in the pan-
els of Fig. 2, where different values of v and c are considered.
The results have reflection symmetry in k and q, so we only
show the parameter region, 0 ≤ k ≤ 1/2 and 0 ≤ q ≤ 1/2. In
the shaded area (light or dark) of each panel of Fig. 2, the ex-
citation energy is negative, and the corresponding Bloch states
ψk are saddle points. For those values of k outside the shaded
area, the Bloch states are local energy minima and represent
superfluids. The superfluid region expands with increasing
atomic interaction c, and occupies the entire Brillouin zone
for sufficiently large c. On the other hand, the lattice potential
strength v does not affect the superfluid region very much as
we see in each row. The phase boundaries for v� 1 are well
reproduced from the analytical expression k =

√
q2/4+ c for

v = 0, which is plotted as triangles in the first column.
If εk(q) is complex, the system suffers dynamical instabil-

ity, which is shown by the dark-shaded areas in Fig. 2. The dy-
namical instability is the result of the resonance coupling be-
tween a phonon mode and an anti-phonon mode by first-order
Bragg scattering. The matrix Mk(q) is real in the momentum
representation, meaning that its complex eigenvalue can ap-
pear only in conjugate pairs and they must come from a pair
of real eigenvalues that are degenerate prior to the coupling.
Degeneracies or resonances within the phonon spectrum or
within the anti-phonon spectrum do not give rise to dynamical
instability; they only generate gaps in the spectra. Based on
this general conclusion, we consider two special cases, which
allow for simple explanations of the onset of dynamical insta-
bility.
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(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

kd

Fig. 2. Stability phase diagrams of BEC Bloch states in optical lattices.
k is the wave number of BEC Bloch waves; q denotes the wave number
of perturbation modes. In the shaded (light or dark) area, the perturbation
mode has negative excitation energy; in the dark shaded area, the mode
grows or decays exponentially in time. The triangles in (a1–a4) represent
the boundary, q2/4+ c = k2, of saddle point regions at v = 0. The solid
dots in the first column are from the analytical results of Eq. (20). The
circles in (b1) and (c1) are based on the analytical expression (21). The
dashed lines indicate the most unstable modes for each Bloch wave ψk .[29]

One case is the weak periodic potential limit v� 1, where
we can approximate the boundary with the free space case.
This case corresponds to the first column of Fig. 2. In this
limit, we can approximate the phonon spectrum and the anti-
phonon spectrum with the ones given by Eq. (19). By equating
them, ε+(q−1) = ε−(q). For the degeneracy, we find that the
dynamical instability should occur on the following curves:

k =
√

q2c+q4/4+
√
(q−1)2c+(q−1)4/4 . (20)

These curves are plotted as solid dots in Fig. 2, and they fall
right in the middle of the thin dark-shaded areas. To some ex-
tent, one can regard these thin dark-shaded areas as broadening
of the curves (20). It is noted in Ref. [33] that the relation (20)
is also the result of ε+(q− 1)+ ε+(−q) = 0, which involves
only the physical phonons. Therefore, the physical meaning
of Eq. (20) is that one can excite a pair of phonons with zero
total energy and with total momentum equal to a reciprocal
wave number of the lattice.

The other case, c� v, is shown in the first row of Fig. 2.
The open circles along the left edges of these dark-shaded ar-
eas are given by

E1(k+q)−E1(k) = E1(k)−E1(k−q), (21)
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where E1(k) is the lowest Bloch band of

H0 =−
1
2

∂ 2

∂x2 + vcos(x). (22)

In this linear periodic system, the excitation spectrum (phonon
or anti-phonon) just corresponds to transitions from the Bloch
states of energy E1(k) to other Bloch states of energy En(k+
q), or vise versa. The above equation is just the resonance
condition between such excitations in the lowest band (n = 1).
Alternatively, we can write the resonance condition as

E1(k)+E1(k) = E1(k+q)+E1(k−q) . (23)

Thus, this condition may be viewed as the energy and momen-
tum conservation for two particles interacting and decaying
into two different Bloch states E1(k+ q) and E1(k− q). This
is the same physical picture behind Eq. (20).

One common feature of all the diagrams in Fig. 2 is that
there are two critical Bloch wave numbers, kt and kd. Beyond
kt the Bloch waves ψk suffer the Landau instability; beyond kd

the Bloch waves ψk are dynamically unstable. The onset of in-
stability at kd always corresponds to q = 1/2. In other words,
if we drive the Bloch state ψk from k = 0 to k = 1/2 the first
unstable mode is always q = ±1/2, which represents period
doubling. Only for k > kd can longer wavelength instabilities
occur. The growth of these unstable modes drives the system
far away from the Bloch state and spontaneously breaks the
translational symmetry of the system.

3.2. Two critical velocities

Besides inducing the dynamical instability, the presence
of the optical lattice has also non-trivial consequences on the
concept of critical velocity. In contrast to the homogeneous
superfluid which has only one critical velocity, there are two
distinct critical velocities for a periodic superfluid.[34] The first
one, which we call inside critical velocity, is for an impu-
rity to move frictionlessly in the periodic superfluid system
(Fig. 3(a)); the second, which is called trawler critical veloc-
ity, is the largest velocity of the lattice for the superfluidity to
maintain (Fig. 3(b)). We illustrate these two critical velocities
with a BEC in a one-dimensional optical lattice.

The presence of the optical lattice plays a decisive role
in the appearance of the two critical velocities: two very dif-
ferent situations can arise. The first situation is described in
Fig. 3(a), where one macroscopic impurity moves inside the
superfluid. The key feature in this situation is that there is
no relative motion between the superfluid and the lattice. The
other situation is illustrated in Fig. 3(b), where the lattice is
slowly accelerated to a given velocity and there is a relative
motion between the superfluid and the lattice. For these two
different situations, two critical velocities naturally arise.

(a)

(b)

v

periodic superfluid

periodic superfluid

v

Fig. 3. (a) A macroscopic obstacle moves with a velocity of 𝑣 inside a
superfluid residing in a periodic potential. The superfluid and periodic po-
tential are “locked” together and there is no relative motion between them.
(b) The lattice where a superfluid resides is slowly accelerated to a velocity
of 𝑣.

In the first scenario, we consider a moving impurity that
generates an excitation with momentum 𝑞 and energy ε0(𝑞) in
the BEC. According to the conservations of both momentum
and energy, we should have

m0𝑣i = m0𝑣f +𝑞+nh̄G , (24)
m0𝑣

2
i

2
=

m0𝑣
2
f

2
+ ε0(𝑞), (25)

where m0 is the mass of the impurity, 𝑣i and 𝑣f are the initial
and final velocities of the impurity, respectively, 𝐺 is the re-
ciprocal vector, and ε0(𝑞) is the excitation of the BEC at the
lowest Bloch state k = 0. Note that in contrast to the conser-
vation of momentum in free space, here the total momentum
of the impurity and the excitation is not exactly conserved due
to the presence of an optical lattice, and the momenta differing
by integer multiples of reciprocal lattice vector are equivalent.
For phonon excitations, i.e., ε0(𝑞) = c|𝑞|, these two conser-
vations can always be satisfied simultaneously no matter how
small the velocity of the impurity is. In other words, the criti-
cal velocity for this scenario is exactly zero.

In the other scenario, there is relative motion between the
superfluid and the optical lattice, and the superfluid no longer
resides in the k = 0 point of the Brillouin zone. We should
examine the stability of Bloch waves with nonzero k, which
is discussed in detail in the previous subsection. The critical
wave number kt mentioned above corresponds precisely to the
trawler critical velocity vt here. As kt is not zero, vt is not zero.

Both critical velocities can be measured with BECs in
optical lattices. The inside critical velocity vi can be mea-
sured with the same experimental setting as that in Ref. [35],
where the superfluidity of a BEC was studied by moving a
blue-detuned laser inside the BEC. For the trawler critical ve-
locity vt, one can repeat the experiment in Ref. [28], where a
BEC is loaded in a moving optical lattice. One only needs to
shift his attention from dynamical instability to superfluidity.
The potential difficulty lies in that the Landau instability oc-
curs over a much larger time scale, which may be beyond the
life time of a BEC.[28]
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4. Superfluidity with spin–orbit coupling
The intrinsic spin–orbit coupling (SOC) of electrons

plays a crucial role in many exotic materials, such as topo-
logical insulators.[36,37] In spintronics,[38] its presence enables
us to manipulate the spin of electrons by means of exerting
electric field instead of magnetic field, which is much easier
to implement for industrial applications. However, as a rela-
tivistic effect, the intrinsic SOC does not exist or is very weak
for bosons in nature. With the method of engineering atom–
laser interaction, an artificial SOC has been realized for ultra-
cold bosonic gases in Refs. [39]– [42]. A great deal of effort
has been devoted to study many interesting properties of spin–
orbit coupled BECs.[43–55]

A dramatic change that the SOC brings to the concept of
superfluidity is the breakdown of Landau’s criterion of critical
velocity (1) and the appearance of two different critical veloc-
ities. Laudau’s criterion of the critical velocity (1) is based on
the Galilean invariance. It is apparent to many that the scenario
where a superfluid flows inside a motionless tube is equivalent
to the other scenario where a superfluid at rest is dragged by
a moving tube. If the flowing superfluid loses its superfluidity
when its speed exceeds a critical speed vc, then the superfluid
in the other scenario will be dragged into motion by a tube
moving faster than vc. However, this equivalence is based on
that the superfluid is invariant under the Galilean transforma-
tion. As SOC breaks the Galilean invariance of the system,[56]

we find that the two scenarios mentioned above are no longer
equivalent as shown in Fig. 4: the critical speed for scenario
(a) is different from the one for scenario (b). For easy refer-
ence, the critical speed for (a) is hereafter called the critical
flowing speed and the one for (b) the critical dragging speed.

(a) (b)

(c)

SOC 
superfluid

SOC 
superfluid

SOC superfluid

vf

vd

vd

Fig. 4. (a) A superfluid with SOC moves while the tube is at rest. (b) The
superfluid is dragged by a tube moving at the speed of v. (c) An impurity
moves at v in the SOC superfluid. The reference frame is the lab. The
two-way arrow indicates the equivalence between different scenarios and
the arrow with a bar indicates the non-equivalence.

For ultra-cold atomic gases, the breakdown of the
Galilean invariance in the presence of SOC can be understood
both theoretically and experimentally.

From the theoretical point of view, we show in detail how
a system with SOC changes under the Galilean transforma-

tion. We adopt the formalism in Ref. [56]. The operator for
the Galilean transformation is

G(𝑣, t) = exp [i𝑣 · (m𝑟−𝑝t)/h̄] , (26)

which satisfies the definition

G†(𝑣, t)𝑟G(𝑣, t) = 𝑟−𝑣t, (27)

G†(𝑣, t)𝑝G(𝑣, t) = 𝑝−m𝑣, (28)

G†(𝑣, t)𝜎G(𝑣, t) = 𝜎. (29)

A system is invariant under the Galilean transformation if the
following equation is satisfied (Ref. [56]):

G†(𝑣, t)
[

ih̄
∂

∂ t
−H

]
G(𝑣, t) =

[
ih̄

∂

∂ t
−H

]
. (30)

The above condition is clearly satisfied by a Hamiltonian with-
out SOC, e.g., H = 𝑝2/2m. However, for a Hamiltonian with
SOC, e.g., Hsoc = 𝑝2/2m+γ (σx py−σy px), it is easy to check
that

G†(𝑣, t)
[

ih̄
∂

∂ t
−Hsoc

]
G(𝑣, t) =

[
ih̄

∂

∂ t
−H ′soc

]
, (31)

where H ′soc = Hsoc +mγ (σxvy−σyvx). Clearly there is an ad-
ditional term dependent on the velocity of the reference frame.
This new term can be regarded as an effective Zeeman effect
and can not be gauged away; the Galilean invariance of the
system is thus lost.

In the experiments of ultra-cold atomic gases, the SOC is
created by two Raman beams that couple two hyperfine states
of the atom. Since the Galilean transformation only boosts
the BEC, not including the laser setup as a whole, the moving
BEC will experience a different laser field due to the Doppler
effect, resulting in a loss of the Galilean invariance.

4.1. Bogoliubov excitations and definition of critical veloc-
ities

We use the method introduced in Section 2.2 to study the
superfluidity of a BEC with SOC by computing its elementary
excitations.[57] In experiments, only the equal combination of
Rashba and Dresselhaus coupling is realized. Here we use the
Rashba coupling as an example as the main conclusion does
not rely on the details of the SOC type.

We calculate how the elementary excitations change with
the flow speed and manage to derive from these excitations,
the critical speeds for the two different scenarios shown in
Fig. 4(a) and 4(b). We find that there are two branches of
elementary excitations for a BEC with SOC: the lower branch
is phonon-like at long wavelengths and the upper branch is
generally gapped. Careful analysis of these excitations indi-
cates that the critical flowing velocity for a BEC with SOC
(Fig. 4(a)) is non-zero, while the critical dragging speed is
zero (Fig. 4(b)). This shows that the critical velocity depends
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on the reference frame for a BEC with SOC and, probably, for
any superfluid that has no Galilean invariance.

Specifically, we consider a BEC with pesudospin 1/2
and the Rashba SOC. The system can be described by the
Hamiltonian[44,47,58,59]

H =
∫

d𝑟
{

∑
σ=1,2

ψ
∗
σ

(
− h̄2∇2

2M
+V (𝑟)

)
ψσ

+ γ [ψ∗1 (i p̂x + p̂y)ψ2 +ψ
∗
2 (−i p̂x + p̂y)ψ1]

+
C1

2
(
|ψ1|4 + |ψ2|4

)
+C2|ψ1|2|ψ2|2

}
, (32)

where γ is the SOC constant, C1 and C2 are interaction
strengths between the same and different pesudospin states,
respectively. For simplicity and easy comparison with pre-
vious theory, we focus on the homogeneous case V (𝑟) = 0
despite that the BEC usually resides in a harmonic trap in ex-
periments. Besides, we limit ourselves to the case C1 > C2,
namely, in the plane wave phase. In the following discussion,
for simplicity, we set h̄ = M = 1 and ignore the non-essential
z direction, treating the system as two-dimensional. We also
assume the BEC moves in the y direction, and the critical ve-
locity is found to be not influenced by the excitation in the z
direction.

The GP equation obtained from the Hamiltonian (32) has
plane wave solutions

φ𝑘 =

(
ψ1
ψ2

)
=

1√
2

(
e iθ𝑘

−1

)
e i𝑘·𝑟−iµ(𝑘)t , (33)

where tanθ𝑘 = kx/ky and µ(𝑘) = |𝑘|2/2−γ|𝑘|+(C1+C2)/2.
The solution φ𝑘 is the ground state of the system when |𝑘|= γ .
There are another set of plane wave solutions, which have
higher energies and are not relevant to our discussion.

We study first the scenario depicted in Fig. 4(a), where
the BEC flows with a given velocity. Since the system is
not invariant under the Galilean transformation, we cannot use
Laudau’s argument to find the excitations for the flowing BEC
from the excitation of a stationary BEC. We have to compute
the excitations directly. This can be done by computing the el-
ementary excitations of the state φ𝑘 with the Bogoliubov equa-
tion for different values of 𝑘.

Without loss of generality, we choose 𝑘 = kŷ with k >

0. Following the standard procedure of linearizing the GP
equation,[29,30] we have the following Bogoliubov equation:

M


u1
u2
v1
v2

= ε


u1
u2
v1
v2

 , (34)

where

M =



H+
k b12 −

1
2

C1 −
1
2

C2

b21 H+
k −

1
2

C2 −
1
2

C1

1
2

C1
1
2

C2 H−k b34

1
2

C2
1
2

C1 b43 H−k


, (35)

with

H±k =±
q2

x +(qy± k)2

2
±A,

A =
C1

2
− k2

2
+ γk,

b12 =−γ(iqx +qy + k)+
C2

2
,

b21 = γ(iqx−qy− k)+
C2

2
,

b34 = γ(iqx−qy + k)− C2

2
,

and

b43 =−γ(iqx +qy− k)− C2

2
.

As usual, there are two groups of eigenvalues and only the
ones whose corresponding eigenvectors satisfy |ui|2−|vi|2 = 1
(i = 1,2) are physical.

In general there are no simple analytical results. We have
numerically diagonalized M to obtain the elementary excita-
tions. We find that part of the excitations are imaginary for
BEC flows with |𝑘| < γ . This means that all the flows with
|𝑘| < γ are dynamically unstable and therefore do not have
superfluidity. For other flows with k ≥ γ , the excitations are
always real and they are plotted in Fig. 5. One immediately
notices that the excitations have two branches, which contact
each other at a single point. Closer examination shows that the
upper branch is gapped in most of the cases, while the lower
branch has phonon-like spectrum at large wavelengths. These
features are more apparent in Fig. 6, where only the excitations
along the x axis and y axis are plotted.

In Figs. 5(c) and 6(c2), we note that part of the excita-
tions in the upper branch are negative, indicating that the un-
derlying BEC flow is thermodynamically unstable and has no
superfluidity. In fact, our numerical computation shows that
there exists a critical value kc: when k > kc either part of the
upper branch of excitations or part of the lower branch or both
become negative. This means that the flows described by the
plane wave solution φ𝑘,− with |𝑘|> kc suffer Landau instabil-
ity and have no superfluidity. Together with the fact that the
flows with |𝑘|< γ are dynamically unstable, we can conclude
that only the flows with γ ≤ |k| ≤ kc have superfluidity. The
corresponding critical speed is vc = kc− γ . We have plotted
how the critical flowing velocity vc varies with the SOC pa-
rameter γ (Fig. 7).
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Fig. 5. Elementary excitations of a BEC flow with the SOC. (a) k = 1; (b)
k = 3; (c) k = 4. C1 = 10, C2 = 4, and γ = 1.

We turn to another reference frame illustrated in Fig. 4(b),
where the BEC can be viewed as being dragged by a moving
tube. To simplify the discussion, we replace the moving tube
with a macroscopic impurity moving inside the BEC as shown
in Fig. 4(c). Correspondingly, the question “whether the BEC
will be dragged along by the moving tube?” is replaced by an
equivalent question “whether the impurity will experience any
viscosity?”. Suppose that the moving impurity generates an
excitation in the BEC. According to the conservations of both
momentum and energy, we should have

m0𝑣i = m0𝑣f +𝑞, (36)
m0𝑣

2
i

2
=

m0𝑣
2
f

2
+ ε0(𝑞), (37)

as those for a BEC without SOC, where ε0(𝑞) is the excitation
of the BEC at k = γ . The critical dragging velocity derived
from Eqs. (36) and (37) is given by

vc =

∣∣∣∣ε0(𝑞)

|𝑞|

∣∣∣∣
min

. (38)
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Fig. 6. Excitations along the x axis (the first column) and y axis (the sec-
ond column) at different values of k. (a1,a2) k = 1; (b1,b2) k = 3; (c1,c2)
k = 4. C1 = 10, C2 = 4, and γ = 1.
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Fig. 7. Critical flowing velocity vc of a BEC as a function of the SOC
parameter γ . (a) C1 = 11, C2 = 3; (b) C1 = 14, C2 = 6.

If the excitations were pure phonons, i.e., ε0(𝑞) = c|𝑞|, these
two conservations would not be satisfied simultaneously when
v ≈ |𝑣i| ≈ |𝑣f| < c. This means that the impurity could not
generate phonons in the superfluid and would not experience
any viscosity when its speed was smaller than the sound speed.
Unfortunately, for our BEC system, the elementary excitations
ε0(𝑞) are not pure phonons, as will be shown below.

When γ 6= 0, the excitations ε0(𝑞) also share two
branches. Along the x axis, these two branches are

ε
±
0 (qx) =

√
s1 + s2q2

x +
q4

x

4
±
√

t1 + t2q2
x + t3q4

x + γ2q6
x ,(39)

where s1 = 2γ4 + γ2 (C1−C2), s2 = 2γ2 + 1
2C1, t1 = s2

1, t2 =

2s1s2, and t3 = 2s1 +
(
γ2 +C2/2

)2. Along the y axis, the exci-
tations of the ground state are

ε
−
0 (qy) =

√
C1 +C2

2
q2

y +
q4

y

4
, (40)
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ε
+
0 (qy) = 2γqy +

√
2s1 +

(
s2−

C2

2

)
q2

y +
q4

y

4
. (41)

When γ > 0, the upper branch ε
+
0 (qx) is always parabolic at

small qx with a gap
√

2s1. When expanded to the second order
of qx, the lower branch has the following form:

ε
−
0 (qx)≈ q2

x

√
C1 +C2

8γ2 . (42)

This shows that ε
−
0 (qx) is parabolic at long wavelengths in-

stead of linear as usually expected for a boson system. This
agrees with the results in Ref. [49]. This parabolic excitation
has a far-reaching consequence: according to Eq. (38), the crit-
ical dragging velocity vc is zero, very different from the critical
flowing velocity for a BEC moving in a tube. This shows that
the critical velocity for a BEC with SOC is not independent
of the reference frame, in stark contrast with a homogeneous
superfluid without SOC. This result of course has the root in
the fact that the BEC described by the SOC Hamiltonian (32)
is not invariant under the Galilean transformation.[56]

We have also investigated the superfluidity with the gen-
eral form of SOC, which is a mixture of Rashba and Dressel-
haus coupling. Mathematically, this SOC term has the form
ασx py−βσy px. The essential physics is the same: the criti-
cal flowing speed is different from the critical dragging speed,
and therefore the critical velocity depends on the choice of the
reference frame. However, the details do differ when α 6= β .
The critical dragging speed is no longer zero. Without loss of
generality, we let α > β . The slope of the excitation spectrum
for the ground state along the y axis is

vy =

√√
2α2 (C1−C2 +2α2)+2α2 +

C1−C2

2
−2α ,(43)

and the slope along the x axis,

vx =

√(
1− β 2

α2

)
C1 +C2

2
. (44)

The critical dragging velocity is the smaller one of the above
two slopes, both of which are nonzero.

4.2. Experimental observation

Spin–orbit coupled BECs have been realized by many
different groups[39–42] through coupling ultracold 87Rb atoms
with laser fields. The strength of the SOC in the experiments
can be tuned by changing the directions of the lasers[39–41]

or through the fast modulation of the laser intensities.[60] The
interaction between atoms can be adjusted by varying the con-
finement potential, the atom number or through the Feshbach
resonance.[6] For the scenario in Fig. 4(b), one can use a blue-
detuned laser to mimic the impurity for the measurement of the
critical dragging speed similar to the experiment in Ref. [61].

For the scenario in Fig. 4(a), there are two possible experi-
mental setups for measuring the critical flowing speed. In the
first one, one generates a dipole oscillation similar to the ex-
periment in Ref. [41] but with a blue-detuned laser inserted
in the middle of the trap. The second one is more compli-
cated. At first, one can generate a moving BEC with a gravit-
omagnetic trap.[62] One then uses Bragg spectroscopy[63,64] to
measure the excitations of the moving BEC, from which the
superfluidity can be inferred. For the typical atomic density
of 1014–1015 cm−3 achievable in current experiments,[61] and
the experimental setup in Ref. [39], the critical flowing veloc-
ity is 0.2–0.6 mm/s, while the critical dragging velocity is still
very small, about 10−3–10−2 mm/s. To further magnify the
difference between the two critical velocities, one may use the
Feshbach resonance to tune the s-wave scattering length.

5. Superfluidity of spin current
A neutral boson can carry both mass and spin; it thus can

carry both mass current and spin current. However, when a
boson system is said to be a superfluid, it traditionally refers
only to its mass current. The historical reason is that the first
superfluid discovered in experiment is the spinless helium 4
which carries only mass current. For a boson with spin, say,
a spin-1 boson, we can in fact have a pure spin current, a spin
current with no mass current. This pure spin current can be
generated by putting an unpolarized spin-1 boson system in a
magnetic field with a small gradient. Can such a pure spin cur-
rent be a superflow? In this section we try to address this issue
for both planar and circular pure spin currents by focusing on
an unpolarized spin-1 Bose gas.

The stability of a pure spin current in an unpolarized spin-
1 Bose gas was studied in Ref. [65]. It was found that such a
current is generally unstable and is not a superflow. We have
recently found that the pure spin current can be stabilized to
become a superflow:[66] (i) for a planar flow, it can be stabi-
lized with the quadratic Zeeman effect; (ii) for a circular flow,
it can be stabilized with SOC. We shall discuss these results
and related experimental schemes in detail in the next subsec-
tions.

There has been lots of studies on the counterflow in a two-
species BEC,[65,67–77] which appears very similar to the pure
spin current discussed here. It was found that there is a criti-
cal relative speed beyond which the counterflow state loses its
superfluidity and becomes unstable.[67–75] We emphasize that
the counterflow in a two-species BEC is not a pure spin current
for two reasons. Firstly, although pesudospin the two species
may be regarded as two components of a pesudospin 1/2, they
do not have SU(2) rotational symmetry. Secondly, it is hard to
prepare experimentally a BEC with exactly equal numbers of
bosons in the two species to create a counterflow with no mass
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current. There is also interesting work addressing the issue of
spin superfluidity in other situations.[78–81]

5.1. Planar flow

We consider a spin-1 BEC in free space. The mean-field
wave function of such a spin-1 BEC satisfies the following GP
equation:[82]

ih̄
∂

∂ t
ψm =− h̄2∇2

2M
ψm + c0ρψm + c2

1

∑
n=−1

𝑠 ·𝑆mnψn, (45)

where ψm (m = 1,0,−1) are the components of the macro-
scopic wave function, ρ = ∑

1
m=−1 |ψm|2 is the total density,

𝑠i = ∑mn ψ∗m(Si)mnψn is the spin density vector, and 𝑆 =

(𝑆x,𝑆y,𝑆z) is the spin operator vector with 𝑆i (i = x,y,z)
being the three Pauli matrices in the spin-1 representation.
The collisional interactions include a spin-independent part
c0 = 4π h̄2(a0 + 2a2)/3M and a spin-dependent part c2 =

4π h̄2(a2− a0)/3M, with a f ( f = 0,2) being the s-wave scat-
tering length for spin-1 atoms in the symmetric channel of total
spin f .

We consider a spin current state of the above GP equation
with the form

ψ =

√
n
2

 e i𝑘1·𝑟

0
e i𝑘2·𝑟

 , (46)

where n is the density of the uniform BEC. The wave func-
tion above describes a state with component m = 1 moving at
speed h̄𝑘1/M, component m = −1 moving at speed h̄𝑘2/M,
and component m = 0 stationary. The requirement of equal
chemical potential leads to |𝑘1| = |𝑘2|. In the case where
𝑘1 =−𝑘2, this state carries a pure spin current: the total mass
current is zero as it has equal mass counterflow while the spin
current is nonzero.

To determine whether the state (46) represents a super-
fluid, we need to compute its Bogoliubov excitation spectrum,
also using the method introduced in Section 2.2. It is in-
structive to first consider the special case where there is no
counterflow, i.e., 𝑘1 = 𝑘2 = 0. The excitation spectra are
found to be ε0 =

√
2c2nεq + ε2

q , ε
±1
1 =

√
2c0nεq + ε2

q , and

ε
±1
2 =

√
2c2nεq + ε2

q , respectively, with εq = h̄2q2/2M. Hence
for antiferromagnetic interaction (c0 > 0, c2 > 0), all branches
of the spectra are real and there is a double degeneracy in one
branch of the spectra. The phonon excitations give two sound
velocities,

√
nci/M (i = 0,2), corresponding to the speeds of

density wave and spin wave, respectively. However, the exis-
tence of phonon excitation does not mean that the pure spin
current (𝑘1 = −𝑘2 6= 0) is a superflow as we cannot obtain a
current with 𝑘1 = −𝑘2 6= 0 from a state with 𝑘1 = 𝑘2 = 0 by
a Galilean transformation.

For the counterflow state with 𝑘1 = −𝑘2 6= 0, the sta-
bility has been studied in Ref. [65]. It is found that, for the
antiferromagnetic interaction case (c0 > 0, c2 > 0), the exci-
tation spectrum of the m = 0 component always has nonzero
imaginary part in the long-wavelength limit as long as there
is counterflow between the two components, and the imagi-
nary excitations in the m = 1,−1 components only appear for
a large enough relative velocity v1 = 2

√
nc2/M. For the fer-

romagnetic interaction case (c0 > 0, c2 < 0), both excitation
spectra of the m = 0 and m = 1,−1 components have nonzero
imaginary parts for any relative velocity. This means that the
pure spin current cannot be stable in any cases.

For the general non-collinear case (𝑘= (𝑘1 +𝑘2)/2 6= 0)
and antiferromagnetic interaction, the excitation spectrum for
the m = 0 component is found to be

ε
0 =

√(
εq +

h̄2

2M
(|𝑘|2−|𝑘1|2)+ c2n

)2

− c2
2n2. (47)

We see here that as long as the momenta of the two compo-
nents are not exactly parallel, i.e., 𝑘1 is not exactly equal to
𝑘2, then |𝑘| < |𝑘1|, and there is always dynamical instability
for the long-wavelength excitations.

Therefore, the spin current in Eq. (46) is generally un-
stable and not a superflow. This instability originates from
the interaction process described by ψ

†
0 ψ

†
0 ψ1ψ−1 in the sec-

ond quantized Hamiltonian. This energetically favored pro-
cess converts two particles in the m = 1,−1 components, re-
spectively, into two stationary particles in the m = 0 compo-
nent. To suppress such a process and achieve a stable pure spin
current, one can utilize the quadratic Zeeman effect. With the
quadratic Zeeman effect of a negative coefficient, the Hamilto-
nian adopts an additional term λm2 (λ < 0 and m = 1,0,−1).
This term does not change the energy of the m = 0 component,
but lowers the energy of the other two components m = 1,−1.
As a result, there arises a barrier for two atoms in the m= 1,−1
components scattering to the m = 0 component, and the scat-
tering process is thus suppressed.

The above intuitive argument can be made more rigor-
ous and quantitative. Consider the case 𝑘1 = −𝑘2. With the
quadratic Zeeman term, the excitation spectrum for the m = 0
component changes to

ε
0 =

√(
εq−

h̄2|𝑘1|2
2M

+ c2n−λ

)2

− c2
2n2. (48)

Therefore, as long as −λ − h̄2|𝑘1|2/2M > 0, long-wavelength
excitations will be stable for the m = 0 component. From the
excitation of the m = 0 component, one can obtain a crit-
ical relative velocity of the spin current, v0 = 2

√
−2λ/M.

There is another nonzero critical velocity v1 = 2
√

nc2/M de-
termined by the excitations of the m = 1,−1 components.
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The overall critical velocity of the system is the smaller one
of v0 and v1. Therefore, below the critical relative velocity
vc = min{v0,v1}, the pure spin current is stable and a super-
flow. The experimental scheme to realize such a Zeeman effect
is discussed in Subsection 5.3.

5.2. Circular flow

In the cylindrical geometry, we consider a pure spin cur-
rent formed by two vortices with opposite circulation in the
m = 1,−1 components. From similar arguments, one can ex-
pect that interaction will make such a current unstable. In-
spired by the quadratic Zeeman effect method above, we pro-
pose to use SOC to stabilize it. The SOC can be viewed as a
momentum-dependent effective magnetic field that is exerted
only on the m = 1,−1 components. Therefore, it is possible
that SOC lowers the energy of m = 1,−1 components and,
consequently, suppresses the interaction process leading to the
instability.

The model of a spin-1 BEC subjecting to the Rashba SOC
can be described by the following energy functional:

E [ψα ] =
∫

d𝑟
{

∑
α

h̄2|∇ψα |2

2M
+ρV (r)+

c̃0

2
ρ

2 +
c̃2

2
𝑠2

+ γ〈Sx py−Sy px〉
}
, (49)

where ρ is the density, V (r) = Mω2(x2 + y2)/2 is the trap-
ping potential, and γ is the strength of SOC. 〈· · · 〉 is the ex-
pectation value taken with respect to the three component
wave function ψ = (ψ1,ψ0,ψ−1)

T. Here we assume the con-
finement in the z direction is very tight with trapping fre-
quency h̄ωz � µ,kBT , µ being the chemical potential and T
the temperature, and have integrated the model with respect
to the z direction to obtain an effective two-dimensional sys-
tem. The two-dimensional coupling constants are related to

the three-dimensional scattering lengths through the relations,
c̃0 =
√

8π h̄2(a0+2a2)/3Mlz, and c̃2 =
√

8π h̄2(a2−a0)/3Mlz,
with lz =

√
h̄/Mωz.[83] The SOC strength γ defines a char-

acteristic length asoc = h̄/Mγ , and can be rescaled to be di-
mensionless with respect to the harmonic oscillator length
ah =

√
h̄/Mω . Then we characterize the strength of SOC

with the dimensionless quantity κ = ah/asoc = γ
√

M/h̄ω . The
SOC of Rashba type here can be generated in various ways,
which are discussed in the next subsection.

The above model can describe a spin-1 BEC of 23Na con-
fined in a pancake harmonic trap. Assume the atom num-
ber is about 105. Using the estimate of scattering lengths
a0 = 50aB, a2 = 55aB,[84] with aB being the Bohr radius, the
ground state of spin-1 23Na should be antiferromagnetic be-
cause c̃0 > 0 and c̃2 > 0.[45] Previous studies of spin-1 BEC
with Rashba SOC mostly focus on the strong SOC regime,
where the ground state is found to be the plane-wave phase or
the stripe phase, for ferromagnetic interaction and antiferro-
magnetic interaction, respectively.[44] Here we are interested
in the antiferromagnetic interaction case and the weak SOC
regime (κ � 1), and calculate the ground-state wave function
of the energy functional with the method of imaginary time
evolution.

We find that when the SOC is weak (κ � 1), the ground-
state wave function has the form

ψ =

 χ1(r)e−iφ

χ0(r)
χ−1(r)e iφ

 , (50)

with χ1(r) = −χ−1(r) and all χi real. The ground state is
shown in Fig. 8. Such a ground state consists of an anti-vortex
in the m = 1 component and a vortex in the m = −1 compo-
nent. The m = 0 component does not carry angular momen-
tum. Since |ψ1|= |ψ−1|, the net mass current vanishes.
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Fig. 8. Amplitudes (a1,b1,c1) and phase angles (a2,b2,c2) of the three component wave function ψ = (ψ1,ψ0,ψ−1)
T at the ground state of Hamiltonian (49)

for a BEC of 23Na confined in a pancake trap. The particle number is 105, the radial frequency of the trap is 2π×55 Hz, and the dimensionless SOC strength
is κ = 0.04. The confinement in the z direction is very tight with ωz = 2π × 4200 Hz, so the system is effectively two-dimensional. Units of the X and Y
axes are ah.
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The wave function (50) can be understood at the single-
particle level. In terms of the ladder operators of spin and
angular momentum, the SOC term reads

Hsoc =
γ
√

Mh̄ω

2

[
S+
(

âR− â†
L

)
+S−

(
â†

R− âL

)]
, (51)

where S± is the ladder operator of spin, and â†
L(R) is the cre-

ation operator of the left (right) circular quanta.[85] When the
SOC is very weak (κ � 1), its effect can be accounted for in
a perturbative way. From the ground state Ψ (0) = |0,0〉, the
first-order correction to the wave function for small γ is given
by

Ψ
(1) =

γ
√

Mh̄ω

2h̄ω

(
−S+â†

L +S−â†
R

)
|0,0〉

=
κ

2
(−|1,−1〉+ |−1,1〉) , (52)

where |ms,mo〉 denotes a state with spin quantum number ms

and orbital magnetic quantum number mo. One immediately
sees that ψ1 has angular momentum −h̄ and ψ−1 has angular
momentum h̄. In addition, the amplitudes of both ψ1 and ψ−1

are proportional to κ .
There exits a continuity equation for the spin density and

spin current, which is

d
dt

(
ψ

†𝑆µ ψ
)
+∇ ·𝐽 s

µ = 0. (53)

The spin current density tensor 𝐽 s
µ (µ = x,y,z denotes the spin

component) is defined as[86,87]

𝐽 s
µ =

1
2
{

ψ
†Sµ𝑣ψ + c.c.

}
=

1
2

{
∑

m,n,l
ψ
∗
m
(
Sµ

)
mn𝑣nlψl + c.c.

}
, (54)

where

𝑣nl =
𝑝

M
+ γ (ẑ×𝑆nl) , (55)

and c.c. means the complex conjugate. The second part in 𝑣nl

is induced by the SOC.
By the definition in Eq. (54), the spin current density car-

ried by the ground state (50) is

𝐽 s
x = γ sin2φ |ψ1|2x̂+ γ

(
|ψ0|2 +2|ψ1|2 sin2

φ
)

ŷ,

𝐽 s
y =−γ

(
|ψ0|2 +2|ψ1|2 cos2

φ
)

x̂− γ sin2φ |ψ1|2ŷ,

𝐽 s
z =

(
−2h̄|ψ1|2

Mr
+
√

2γ|ψ1ψ0|
)

φ̂ . (56)

From both analytical and numerical results of the wave func-
tion, |ψ1|� |ψ0|, so 𝐽 s

x roughly points in the y direction, while
𝐽 s

y almost points in the −x direction. 𝐽 s
z represents a flow

whose amplitude has rotational symmetry. From the numeri-
cal results shown in Fig. 9, we see that 𝐽 s

z is a counterclock-
wise flow. The amplitudes of 𝐽 s

x and 𝐽 s
y are of the same order,

both proportional to κ , while that of 𝐽 s
z , proportional to κ2, is

much lower. It is evident that the state in Eq. (50) carries no
mass current and only pure spin current. Since the spin cur-
rent is in the ground state, it must be stable. In this way, we
have realized a superfluid of pure spin current, or a pure spin
supercurrent.
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Fig. 9. Distribution of the spin current densities 𝐽 s
x (a), 𝐽 s

y (b), and 𝐽 s
z (c)

of the ground state shown in Fig. 8. The length of the arrows represents
the strength of the spin current. The arrow length of different subfigures is
not to scale. κ = 0.04. Units of the X and Y axes are ah.

5.3. Experimental schemes

In this subsection, we propose the experimental schemes
to generate and detect the pure spin currents discussed in Sub-
sections 5.1 and 5.2.

The planar pure spin current can be easily generated.
By applying a magnetic field gradient, the two components
m = 1,−1 will be accelerated in opposite directions and a pure
spin current is generated as done in Refs. [70] and [71]. To
stabilize this spin current, one needs to generate the quadratic
Zeeman effect. We apply an oscillating magnetic field Bsinωt
with the frequency ω being much larger than the characteris-
tic frequency of the condensate, e.g., the chemical potential
µ . The time averaging removes the linear Zeeman effect; only
the quadratic Zeeman effect remains. The coefficient of the
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quadratic Zeeman effect from the second-order perturbation
theory is given by λ = (gµBB)2 /∆Ehf, where g is the Landé g
factor of the atom, µB is the Bohr magneton, and ∆Ehf is the
hyperfine energy splitting.[88] For the F = 2 manifold of 87Rb,
∆Ehf < 0, so the coefficient of the quadratic Zeeman effect is
negative.

The circular flow in Subsection 5.2 may find prospective
realizations in two different systems: cold atoms and exciton
BEC. In cold atoms, we consider a system consisting of a BEC
of 23Na confined in a pancake trap, where the confinement in
the z direction is so tight that one can treat the system effec-
tively as two-dimensional. The SOC can be induced by two
different methods. One is by the exertion of a strong external
electric field 𝐸 in the z direction. Due to the relativistic effect,
the magnetic moment of the atom will experience a weak SOC,
where the strength γ = gµB|E|/Mc2. Here M is the atomic
mass and c is the speed of light. For weak SOC (small γ), the
fraction of atoms in the m = 1,−1 components is proportional
to γ2. For an experimentally observable fraction of atoms, e.g.,
0.1% of 105 atoms, using the typical parameters of 23Na BEC,
the estimated electric field is of the same order of magnitude
as the vacuum breakdown field. For atoms with smaller mass
or larger magnetic moment, the required electric field can be
lowered. Another method of realizing SOC is to exploit the
atom laser interaction, where strong SOC can be created in
principle.[89] In exciton BEC systems, as the effective mass of
exciton is much smaller than that of atom, the required electric
field is four to five orders of magnitude smaller, which is quite
feasible in experiments.[90–93]

The vortex and anti-vortex in the m = 1,−1 components
can be detected by the method of time of flight. First one can
split the three spin components with the Stern–Gerlach effect.
The appearance of vortex or anti-vortex in the m = 1,−1 com-
ponents is signaled by a ring structure in the time-of-flight im-
age. After a sufficiently long expansion time, the ring structure
should be clearly visible.

6. Summary
In summary, we have studied the superfluidity of three

kinds of unconventional superfluids, which show distinct fea-
tures from a uniform spinless superfluid. The periodic su-
perfluid may suffer a new type of instability, the dynamical
instability, absent in homogeneous case; the spin–orbit cou-
pled superfluid has a critical velocity dependent on the refer-
ence frame, a new phenomenon compared with all previous
Galilean invariant superfluids; the superfluid of a pure spin
current, though scarcely stable in previous studies, can be sta-
bilized by the quadratic Zeeman effect and SOC in planar and
circular geometry, respectively. These new superfluids signifi-
cantly enrich the physics of bosonic superfluids.

With the rapid advances in cold atom physics and other
fields, the family of superfluids is expanding with the addi-
tion of more and more novel superfluids. Previous study has
greatly deepened and enriched our understanding of superflu-
idity, but we believe more exciting physics beyond the scope
of our current understanding remains to be discovered in the
future.
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