Solid State Physics

Homework Ch2 No.1, Due on Mar 15th, Friday

- 1. Problem No.1 in Ch8 of "Solid State Physics" by Ashcroft/Mermin, "Periodic potential in One Dimension". Questions (a)-(h).
- 2. Consider a one-dimensional lattice Hamiltonian $H = P_x^2/2m + U(x)$, with $U(x) = -V_a \cos^2(k_0 x)$, where the constant $V_a > 0$ denotes the amplitude of periodic lattice potential and k_0 denotes the periodicity. Assume that $V_a \ll E_R$, with $E_R = \hbar^2 k_0^2/2m$ called *recoil energy*.

(a) Find the momentum component of $U_{\mathbf{K}}$, with $\mathbf{E}_{R} = \hbar k_{0}/2m$ caned recoil energy. (a) Find the momentum component of $U_{\mathbf{K}}$, with $\mathbf{K} = K\hat{e}_{x}$. (b) Solve the energy $\mathcal{E}_{k_{x}}$ of the Bloch states $\psi_{k_{x}}$ of the "first band" with momentum $|k_{x}| \ll k_{0}$ up to the order of V_{a}^{2} . The "first band" means that the energy of the states with momentum k_{x} without lattice potential (i.e. $V_{a} = 0$) should be $\mathcal{E}_{k_{x}}^{(0)} = \hbar^{2}k_{x}^{2}/2m$. (c) The gap between the first and the second bands is opened at $k_{x} = \pm k_{0}$. Solve the strength

of the gap up to the first order of V_a .