Solid State Physics

Homework Ch2 No.2, Due on Mar 22nd, Friday

1. (a) From the relation between the Wannier function and the Bloch eigenstates: $f_{n}(\mathbf{R}, \mathbf{r})=$ $\frac{1}{v_{0}} \int d^{3} \mathbf{k} e^{-i \mathbf{k} \cdot \mathbf{R}} \Psi_{n \mathbf{k}}(\mathbf{r})$, show that $\int f_{n}^{*}(\mathbf{R}, \mathbf{r}) f_{n^{\prime}}\left(\mathbf{R}^{\prime}, \mathbf{r}\right) d^{3} \mathbf{r} \propto \delta_{n n^{\prime}} \delta_{\mathbf{R R}^{\prime}}$, where the orthogonality of the Bloch states $\Psi_{n \mathbf{k}}(\mathbf{r})$ can be applied.
(b) In particular, find the proper normalization factor so that $\int f_{n}^{*}(\mathbf{R}, \mathbf{r}) f_{n^{\prime}}\left(\mathbf{R}^{\prime}, \mathbf{r}\right) d^{3} \mathbf{r}=$ $\delta_{n n^{\prime}} \delta_{\mathbf{R R}^{\prime}}$.
2. Problem No. 2 in Chapter 10 of "Solid State Physics" by Ashcroft/Mermin, "Tight-Binding p-Bands in Cubic Crystals". Questions (a)-(d).
3. Consider a one-dimensional lattice Hamiltonian $H=-\frac{1}{2} \nabla_{x}^{2}+U(x)$, with $U(x)=-V_{0} \cos ^{2}\left(k_{0} x\right)$, where the constant $V_{0}>0$ denotes the amplitude of periodic lattice potential and $k_{0}=\pi / a$, with a the lattice constant. For simplicity, here we take that the mass $m=1$ and $\hbar=1$. Thus the recoil energy reads $E_{R}=\hbar^{2} k_{0}^{2} / 2 m=k_{0}^{2} / 2$. The Bloch states of the Hamiltonian can be solved by plane-wave expansion

$$
\begin{equation*}
\Psi_{k}=\sum_{l} c_{l} e^{i k x+i \frac{2 l \pi}{a} x} \tag{1}
\end{equation*}
$$

where $-k_{0} \leq k<k_{0}$ and l sums over all integers. Note that $2 l \pi / a$ is a just reciprocal lattice vector.
(a) Find the secular equation for the coefficients c_{l}.
(b) Numerically solve the Bloch energy \mathcal{E}_{k} for the lowest band under certain value of V_{0} and plot \mathcal{E}_{k} as a function of k. This can be done by taking a cut-off l_{0} for the summation of l, namely, l sums from $l=-l_{0}$ to $l=l_{0}$. For simplicity, you can take $a=1$ so that $k_{0}=\pi$ and then $E_{R}=\pi^{2} / 2$. For $V_{0}=3 E_{R}$, you can see that by taking $l_{0}=5$, the numerically solved \mathcal{E}_{k} of the lowest band is already very close to the exact solution (that's to say, if you increase the value of the cut-off l_{0} the solution almost does not change). In your calculation and plot, you can take say 30 values of k within $\left[-k_{0}, k_{0}\right]$, namely, let $k=-\pi,-14 \pi /(15), \ldots, 14 \pi /(15), \pi$.
4. (This is not a homework problem, but you can choose to study).-For problem No. 3, Find the Wannier function $f(x, R)$ for $R=0$ for the lowest band. On the other hand, expand the potential $U(x)$ around $x=0$ and keep the harmonic term, i.e. up to x^{2}. Solve the lowest eigen-function $\phi_{0}(x)$ for the harmonic potential. Then calculate the overlapping integral $\left\langle f(x, R) \mid \phi_{0}(x)\right\rangle$ and compare it with unity. Check the cases with $V_{0} \gg E_{R}$ and $V_{0} \sim E_{R}$.

