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We present a quantum adiabatic algorithm for a set of quantum 2-satisfiability (Q2SAT) problem, which is a general-
ization of 2-satisfiability (2SAT) problem. For a Q2SAT problem, we construct the Hamiltonian which is similar to that of
a Heisenberg chain. All the solutions of the given Q2SAT problem span the subspace of the degenerate ground states. The
Hamiltonian is adiabatically evolved so that the system stays in the degenerate subspace. Our numerical results suggest that
the time complexity of our algorithm is O(n3.9) for yielding non-trivial solutions for problems with the number of clauses
m = dn(n−1)/2 (d . 0.1). We discuss the advantages of our algorithm over the known quantum and classical algorithms.
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1. Introduction
In 1990s, several quantum algorithms such as Shor’s al-

gorithm for factorization and Grover’s algorithm for search[1]

were found to have a lower time complexity than their clas-
sical counterparts. These quantum algorithms are based on
discrete quantum operations, and are called quantum circuit
algorithms.

Quantum algorithms of a different kind were proposed
by Farhi et al.[2,3] In these algorithms, Hamiltonians are con-
structed for a given problem and the qubits are prepared ini-
tially in an easy-to-prepare state. The state of the qubits is then
driven dynamically and continuously by the Hamiltonians and
finally arrives at the solution state. Although quantum algo-
rithms with Hamiltonians have been shown to be no slower
than quantum circuit algorithms,[4,5] they have found very lim-
ited success. In fact, due to exponentially small energy gaps,[6]

they often cannot even outperform classical algorithms. The
random search problem is a rare exception, for which three
different quantum Hamiltonian algorithms were proposed and
they can outperform classical algorithms. But still these
Hamiltonian algorithms are just as fast as Grover’s.[2,7–9]

Recently, quantum Hamiltonian algorithms were found
for a different problem, independent sets of a graph[10,11] and
they can outperform their classical counterparts significantly.
In this work, we apply it to a set of quantum 2-satisfiability
(Q2SAT) problems, which have two groups of solutions in the
form of product states and entangled states. We aim to find
solutions in the form of entangled states. For a given Q2SAT
problem, we construct a Hamiltonian whose ground states are
all the solutions of the problem. Initially we prepare the sys-

tem in a trivial product solution state, we then evolve it in the
subspace of degenerate ground states by slowly changing the
Hamiltonian parameters along a closed path. In the end we get
a superposition of different solutions. Numerical calculation
shows that the time complexity of our quantum algorithm is
O(n3.9) for problems with m = dn(n− 1)/2 (d . 0.1), where
m is the number of clauses. There is a classical algorithm for
the Q2SAT problem. Although its time complexity is better,
it tends to find trivial product solutions.[12,15] The quantum
algorithm in Ref. [16] can find entangled solutions but with
a slower time complexity of O(mn2/δ (n)), where the energy
gap δ (n) may be in the form of n−g (g positive).

2. Quantum 2-satisfiability problem
The Q2SAT problem is a generalization of the well known

2-satisfiability (2SAT) problem.[12] The algorithm for 2SAT
problem is widely used in scheduling and gaming.[13] Be-
sides, 2SAT problem is a subset of k-satisfiability problem
(kSAT). Since 2SAT problem is a P problem while kSAT prob-
lem for k ≥ 3 is an NP complete problem, kSAT problem has
a great importance in answering whether P = NP. Similarly,
Q2SAT problem is a subset of quantum k-satisfiability prob-
lem (QkSAT). It is expected that QkSAT problem is more com-
plex than kSAT problem, and that quantum algorithms perform
better than classical algorithms in QkSAT problem. Therefore,
QkSAT problem could become a breakthrough in answering
whether P = BQP and BQP = NP.[14]

In a 2SAT problem, there are n Boolean variables and m
clauses. Each clause of two Boolean variables bans one of the
four possible assignments. For example, the clause (¬xi ∨ x j)
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bans the assignment (xi,x j) = (1,0). The problem is to find
an assignment for all the variables so that all the clauses are
satisfied. For quantum generalization, we replace the boolean
variables with qubits and the clauses with two-qubit projec-
tion operators. In a Q2SAT problem of n qubits and m two-
qubit projection operators {Π1,Π2, . . . ,Πm}, the aim is to find
a state |ψ⟩ such that projections of the state are zeros, i.e.,

Π j|ψ⟩= 0, ∀ j ∈ 1,2, . . . ,m. (1)

When all the projection operators project onto product states,
Q2SAT problems go back to 2SAT problems.

In this work we focus on a class of 2-QSAT problems,
where all the projection operators are of an identical form

Π j = |Φ j⟩⟨Φ j|, |Φ j⟩= α|1a j 0b j⟩+β |0a j 1b j⟩, ∀ j, (2)

where |α|2 + |β |2 = 1 and a j,b j label the two qubits acted on
by Π j. This is a special case of the restricted Q2SAT problems
discussed by Farhi et al.,[16] i.e., where all the clauses are the
same. These Q2SAT problems apparently have two solutions,
|ψ⟩= |0⟩ · · · |0⟩ and |ψ⟩= |1⟩ · · · |1⟩, which are product states.
We call them trivial solutions. We are interested in finding
non-trivial solutions which are entangled.

A Q2SAT problem of n qubits and m two-qubit projec-
tions can be also viewed as a generalization of a graph with n
vertices and m edges. As a result, in this work, we often refer
to the Q2AT problem as a graph.

3. Previous algorithms
There are now several algorithms for Q2SAT problems.

The algorithms proposed by Beaudrap et al. in Ref. [12] and
Arad et al. in Ref. [15] are classical. The classical algorithm
relies on that for every Q2SAT problem which has solutions,
there is a solution that is the tensor product of one-qubit and
two-qubit states,

|ψ1⟩= ∏
r
|ψr⟩⊗∏

pq
|ψpq⟩, (3)

where |ψr⟩ is the state of qubit r, |ψpq⟩ is an entangled state of
qubits p and q, and the indices r and p,q do not overlap. This
conclusion is drawn with the following proven fact. If a pro-
jection operator Π j projects onto an entangled state of qubits
a j and b j, then the solution has either of the following two
forms:

|ψ1⟩= |ψa jb j⟩⊗ |rest⟩, (4)

where |ψa jb j⟩ is an entangled state of qubits a j and b j, and

|ψ1⟩= |ψa j⟩⊗ |ψb j⟩⊗ |rest⟩, (5)

where |ψa j⟩ and |ψb j⟩ are single-qubit states. Based on this
feature, we conclude that a qubit involved in only one pro-
jection operator has entanglement with the other qubit of this
projection operator, and that a qubit involved in more than one
projection operators has no entanglement with other qubits.

To find a solution of the form in Eq. (3), one can use the strat-
egy of Davis–Putman’s algorithm for 2SAT problem. That is,
we assign an initial state to a qubit, “propagate” the state to
its adjacent qubits along projection operators, and finally find
out the solution of this form. The above algorithm has a time
complexity of O(n+m), but it is impossible to find a solution
where three or more qubits are entangled.

In the quantum algorithm of Ref. [16], Farhi et al. con-
structed a Hamiltonian

H = ∑
j

Π j, (6)

where Π j is of the form in Eq. (2). There is one-to-one corre-
spondence between the solutions of a Q2SAT problem and the
ground states of its corresponding Hamiltonian. To see this,
we consider a state |ψ2⟩. If a state |ψ2⟩ is a solution of the
Q2SAT problem, then

H|ψ2⟩= ∑
j

Π j|ψ2⟩= 0, (7)

and if |ψ2⟩ is not a solution, then

⟨ψ2|H|ψ2⟩= ∑
j
⟨ψ2|Π j|ψ2⟩> 0. (8)

Therefore, |ψ2⟩ is a solution of the Q2SAT problem if and
only if it is a ground state of the Hamiltonian H. The state is
initialized to

ρ0 =
1
2n I. (9)

In each step of the algorithm, a projection operator Π j is se-
lected and measured at random. If the result is 0, then do
nothing, otherwise a Haar random unitary transfromation is
applied,

Λa j(ρ) =
∫

d[Ua j ]Ua j ρUa j , (10)

on one qubit a j of the two qubits a j and b j involved in Π j.
That is, the operation on the state in each step is

𝒯 (ρ) =
1
m ∑

j
𝒯 j(ρ), (11)

where

𝒯 j(ρ) = (1−Π j)ρ(1−Π j)+
1
2 ∑

a j ,b j

Λa j ,b j(Π jρΠ j). (12)

Now set

T = max
{

49m2n2

2c2 ,
3mn2

2𝜖

}
, (13)

where c(n) is the energy of the ground state and 𝜖(n) is the
energy gap between the ground state and the first excited state.
It is assumed that 𝜖(n) ≈ n−g (g positive). After steps of
length T , the algorithm has a probability of at least 2/3 to
produce a state ρT whose fidelity with the solution is at least
2/3. The quantum algorithm has a time complexity of at least
O(mn2/𝜖), and gives a non-trivial solution.
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4. Our algorithm
Our algortihm follows the one proposed in Ref. [10]. For

a Q2SAT problem of n qubits and m two-qubit projection op-
erators {Π1,Π2, . . . ,Πm}, we construct a Hamiltonian similar
to Eq. (6)

H0 = ∆

m

∑
j=1

Π j, (14)

where ∆ is a positive real number and Π j is of the form in
Eq. (2). Due to equations similar to Eqs. (7) and (8), solutions
of the problem have one-to-one correspondence to the ground
states of H0. The above Hamiltonian can be re-written in terms
of spin-1/2 operators sx,sy,sz as

H0 = ∆

m

∑
j=1

{
− sz

a j
sz

b j
− 1

2
(1−2|β |2)(sz

a j
− sz

b j
)

+2Re(β )
√

1−|β |2(sx
a j

sx
b j
+ sy

a j
sy

b j
)

+2Im(β )
√

1−|β |2(sx
a j

sy
b j
− sy

a j
sx

b j
)
}
, (15)

where we have replaced |α| with
√

1−|β |2 and ignored the
phase of α . A constant is dropped from the Hamiltonian. We
rotate all qubits along some axis 𝑛,

sx,y,z
a j

(t) = exp
(

2π is𝑛a j

t
T

)
sx,y,z

a j
exp
(
−2π is𝑛a j

t
T

)
, (16)

where s𝑛a j
= 𝑛 · ŝ = nxsx

a j
+ nysy

a j + nzsz
a j

is the spin operator
along the direction of 𝑛 and t ∈ [0,T ]. Thus at time t the
Hamiltonian becomes

H(t) = ∆

m

∑
j=1

{
− sz

a j
(t)sz

b j
(t)− 1

2
(1−2|β |2)

[
sz

a j
(t)− sz

b j
(t)
]

+2
√

1−|β |2
[
Re(β )(sx

a j
(t)sx

b j
(t)+ sy

a j
(t)sy

b j
(t))

+ Im(β )(sx
a j
(t)sy

b j
(t)− sy

a j
(t)sx

b j
(t))
]}

. (17)

It is obvious that the eigen-energies of H(t) do not change with
t and the corresponding eigenstates can be obtained by rotat-
ing those of H0. Specifically, the energy gap δ (n) between
the ground states and the first excited states does not change
with t. We are interested in the adiabatic rotation, where T is
big enough. In this case, according to Ref. [17], if the initial
state |ψ(0)⟩ lies in the subspace spanned by the degenerate
ground states {|ψk(0)⟩}, i.e., |ψ(0)⟩ = ∑k ck|ψk(0)⟩, then the
final state |ψ(T )⟩ lies in the subspace spanned by the ground
states {|ψk(T )⟩} as well. Specifically, we have

|ψ(T )⟩= ∑
kl

ckUkl |ψl(0)⟩, (18)

where

U = P
[

exp
(

i
∫ T

0
dtA(t)

)]
, (19)

Akl(t) = i⟨ψl(t)|
d
dt

|ψk(t)⟩. (20)

Here A is the non-Abelian gauge matrix that drives the the dy-
namics in the subspace of the degenerate ground states. For

the special case α = β =
√

2/2, the gauge matrix has the fol-
lowing form:

Akl(t) = iπ⟨ψl |
n

∑
a=1

(s+a − s−a )|ψk⟩. (21)

Here is our algorithm.

• Choose a trivial solution of the Q2SAT problem as the
initial state |ψ(0) = |00 · · ·00⟩ and set H(0) = H0.

• Adiabatically rotate all qubits along some axis n̂ from
t = 0 to t = T . During this rotation, the Pauli matrices
sx,y,z

a j of the qubit a j evolve according to Eq. (16) and
the Hamiltonian of the system H(t) evolves according
to Eq. (17).

• Make measurement at the end.

As shown in Ref. [3], the time complexity of a quantum
adiabatic algorithm is proportional to the inverse square of the
energy gap δ (n) between the ground states and the first ex-
cited states. So, the time complexity of our algorithm depends
on how the energy gap δ (n) scales with n. Here we consider a
special case to estimate the energy gap and examine how it is
influenced by the coefficient |β |. In this special case, the spins
form a one-dimensional chain and couple to their two neigh-
bors. We assume that β is a positive real number. The special
case is in fact the well known Heisenberg chain and has been
thoroughly studied. Its Hamiltonian is

H0 = ∆ ∑
i

[
−sz

i s
z
i+1 −

1
2
(1−2|β |2)(sz

i − sz
i+1)

+2|β |
√

1−|β |2
(
sx

i sx
i+1 + sy

i sy
i+1

)]
. (22)

Its eigen-energies form a band Ek and can be analytically
found.[18] We examine two limits. When β → 0, Ek →
∆(1/2 − 2|β |cosk), thus the gap approaches a constant,
δ (n) → ∆/2. When β =

√
2/2, Ek = ∆(1+ cosk), the gap

δ = 0 if the chain is infinitely long. In our problem, due to that
the chain has a finite length n, the wave vector k is actually dis-
crete and we have δ (n) ∼ O(n−2). As a result, we expect our
algorithm to have the worst performance when |β | approaches√

2/2. According to the above analysis, we mainly investigate
the performance of our algorithm at β =

√
2/2, and regard it

as the worst performance.

5. Numerical simulation
In our numerical simulation, we focus on the special case

where

|Φ j⟩=
1√
2
(|0a j 1b j⟩+ |1a j 0b j⟩). (23)

For this case, the Hamiltonian takes a simple form

H3 = ∆

m

∑
j=1

(sx
a j

sx
b j
+ sy

a j
sy

b j
− sz

a j
sz

b j
). (24)
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This Hamiltonian commutes with the total angular momentum
along the z axis [H3,∑

n
a=1 sz

a] = 0. The graph for each Hamil-
tionian is generated as follows. We first fix n, the number of
vertices (or qubits), and then generate edges between each pair
of vertices with the probability d. As a result, the number
of edges m ≈ dn(n− 1)/2. In our numerical calculation, we
choose d = 0.1. We randomly generate 10000 graphs for n= 5
to n = 11, 1000 for n = 12, n = 13 and n = 14, and 100 for
n = 15. The corresponding Hamiltonians are diagonalized nu-
merically and the energy gap δ is extracted. The average of
the energy gap δ is plotted in logarithm scale in Fig. 1. Fitted
by least squares method, we get

log
(〈

1
δ 2

〉)
= 3.8634log(n)−7.2048, (25)

with correlation coefficient r = 0.995. This shows that the
inverse square of the energy gap ⟨1/δ 2⟩ ≈ O(n3.9) and the
time complexity t ≈ O(n3.9) according to Ref. [3]. Such a
time complexity is better than that of the quantum algorithm
in Ref. [16], which is of O(n5.9) for m ≈ dn(n − 1)/2 and
1/δ ≈ O(n1.9).

1.5 2.0 2.5

ln(n)

r/.

3.0

0

1

2

3

4
ln</δ>/.ln(n)↩.

ln
(<

/
δ

>↽

Fig. 1. The relation between the average of the inverse square of energy
gaps of randomly generated problems and the number of qubits. The
x-axis is the logarithm of the number of qubits, log(n), and the y-axis
is the logarithm of the average of the inverse square of the energy gap,
log(⟨1/δ 2⟩). The line is fitted by least squares method.

Shown in Fig. 2 is the distribution of the inverse square of
energy gaps 1/δ 2 for a group of randomly generated graphs
with n = 11. The distribution shows that few graphs lead to a
large inverse square of the gap, but most problems correspond
to small inverse square of the gap near the average. Thus it is
reasonable that we use the average of the inverse square of the
energy gap to compute the time complexity.

Although our algorithm is quantum, we can still simulate
it on our classical computer when the graph size is not very
large. In our simulation, we choose the direction n̂ to be along
the y-axis. In this simple case, we have explicitly how the spin
operators rotate

sx
a j
(t) = sx

a j
cos(2πt/T )+ sz

a j
sin(2πt/T ),

sy
a j(t) = sy

a j ,

sz
a j
(t) =−sx

a j
sin(2πt/T )+ sz

a j
cos(2πt/T ).

(26)

In our numerics, we choose T = π/(50δ 2) for randomly-
generated graphs with n from 8 to 14. We simulate the evo-

lution of the system by the fourth-order Runge–Kutta method,
and calculate the module square of the coefficients, i.e., prob-
ability, of the final state on all the possible ground states. The
probability of the trivial states for graphs with n from 8 to 14
and the probability distribution for a graph with n = 14 are
shown in Fig. 3. It can be seen that after the adiabatic evo-
lution, we do not return to the trivial state but reach a non-
trivial state with a high probability. Such an ability to find a
non-trivial solution is better than that of the classical algorithm
proposed in Refs. [12,15].

0

500

1000

10 20 300

1/δ2

Fig. 2. The distribution of the inverse square of energy gaps for 10000
randomly generated problems with n = 11. The x-axis is the inverse
square of the energy gap, 1/δ 2, and the y-axis is the number ρ of prob-
lems whose energy gap is within [1/δ 2 −0.1,1/δ 2].
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trivial

300
0

0.02

0.04

0.06
(b)

0

0.005

0.010
 (a)

states 317
and 323

states are

i

Fig. 3. (a) The probability of trivial states of a randomly generated
Q2SAT problem after the adiabatic evolution for different n. The dashed
line is guide for the eyes. (b) The probability distribution of a randomly
generated Q2SAT problem on all its ground states after the adiabatic
evolution for n = 14. The x-axis is the index of all the ground states.
The y-axis is the probabilities of the ground states in the final state.
The ground states are indexed according to their probabilities in the de-
scending order. The indexes of the trivial states are 317 and 323.

For our algorithm to work, a large number of solutions
are required. However, when d > 0.1, the number of solutions
decreases significantly. In that case, the state remains on triv-
ial states with a high probability after the adiabatic evolution,
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and our algorithm thus does not work any more. Numerical
results show that for n = 14 and d > 0.15, our algorithm fails
with a non-negligible probability.

6. Conclusion
A quantum adiabatic algorithm for the Q2SAT problem is

proposed. In the algorithm, the Hamiltonian is constructed so
that all the solutions of a Q2SAT problem are its ground states.
A trivial product-state solution is chosen as the initial state. By
rotating all the qubits, the system evolves adiabatically in the
subspace of solutions and ends up on a non-trivial state. The-
oretical analysis and numerical simulation show that, for a set
of Q2SAT problems, our algorithm finds a non-trivial solution
with time complexity better than the existing algorithms.
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