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We present an algorithm for the generalized search problem (searching k marked items among N items) based
on a continuous Hamiltonian and exploiting resonance. This resonant algorithm has the same time complexity
O(\/N/k) as the Grover algorithm. A natural extension of the algorithm, incorporating auxiliary “monitor”
qubits, can determine k precisely, if it is unknown. The time complexity of our counting algorithm is 0(\/N),
similar to the best quantum approximate counting algorithm, or better, given appropriate physical resources.

PACS: 03.67.Ac, 03.67.Lx, 89.70.Eg

The advantages of quantum computers over classi-
cal computers are rooted in the tensor product struc-
ture of quantum mechanics and the superposition
principle. It is, however, not straightforward to uti-
lize those advantages. Shor’s algorithm for factor-
izing large integer numbers!!! and Grover’s search
algorithm[”! are outstanding but rare examples where
quantum computation gives a theoretical edge in a
natural problem.”! Shor’s and Grover’s algorithms are
quantum circuit algorithms, consisting of a sequence
of discrete operations known as quantum gates.[:‘]

There is a different paradigm of quantum comput-
ing wherein algorithms are designed by constructing
Hamiltonians. The system is initially in an easy-to-
prepare quantum state, and the quantum computer
evolves the quantum state using designed Hamiltoni-
ans. It eventually arrives at a quantum state which
encodes the solution of the problem. The Hamiltonian
approach can take advantage of intuition in quantum
mechanics that physicists have cultivated over decades
of research. A Hamiltonian was proposed for quan-
tum search by Farhi and Gutmann in 1998, and a
generic quantum adiabatic algorithm was proposed in
2000.1 In the adiabatic algorithm, the quantum com-
puter follows the ground state of a time-dependent
Hamiltonian. It has been shown that every quan-
tum circuit algorithm can be converted into a quan-
tum adiabatic algorithm, whose time complexity is
exactly the same.l"") A quantum Hamiltonian algo-
rithm for independent-set problems has some advan-
tages over other known quantum algorithms and clas-
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sical algorithms.[®!

A quantum algorithm is essentially a manipula-
tion that evolves an initial state to a target quantum
state. Since resonance has been widely exploited in
many branches of physics to achieve that sort of state
evolution, it is natural to ask whether resonant evolu-
tion might be useful in this context.

Here we use resonance to construct a quantum
Hamiltonian algorithm for a generalized form of the
problem addressed by Grover, namely to find, given
an oracle, marked entries within a list of items. If the
list has N entries, and there are £k > 1 marked items,
our resonant algorithm can find one of the marked
entries in time O(y/N/k). This time complexity is
the same as the Grover algorithm!? and the quan-
tum adiabatic search algorithm.”-'%) Though there is
no gain in performance, there is no loss either, and
the resonant approach seems particularly simple and
transparent.

Next we introduce a monitor qubit, which is very
natural in our context. Roughly speaking, a monitor
qubit keeps track of whether the resonant transition of
interest has occurred. Through use of moniter bits we
can both avoid wasteful measurements on computa-
tional bits, and also gather information on the initial
state. Below we demonstrate two different, charac-
teristic methods to extract information using monitor
qubits: predictive dissonance and robust readout. In
the search context, predictive dissonance allows us to
determine the number k of marked entries, when it
is not given, with the time complexity O(v/N). All
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known quantum algorithms can only approximately
determine k with a similar time complexity.['"'? Ro-
bust readout is a more open-ended concept, which de-
pends in detail on the physical implementation of the
quantum computer. Given appropriate resources, it
can speed things up further.

Let us briefly recall the basic resonance phe-

nomenon in a two-state quantum system.['l 3] We con-
sider the time-dependent Hamiltonian,
é Ee—iwt
eezwt -
2

where A is the energy difference between the two
states and w and e are the frequency and strength
of the external drive, respectively. Without loss of
generality, we assume that € is real. This Hamiltonian
can describe some realistic physical systems, or arise
as a rotating-wave approximation of systems where
the driving is proportional to cos(wt). By going to a
rotating reference frame in Hilbert space, one readily
derives the time evolution operator corresponding to
Eq. (1) to be
w—A €

ﬁ(t):cos(nt)ffisin(nt){ o &ﬁg&x], 2)

where k = /€2 + (w — A)2/4.

Off resonance, when |w — A| > |e|, we have

N w—A4] w—A

U(t) ~ cos(|72|t)l - isin(%t)&z. (3)
In this case, if the initial condition has only upper
component, then the system will remain concentrated
on the upper component.

On resonance, |w — A| < ¢, the time propagator
becomes

U(t) ~ cos(et)I — isin(et)d, . (4)

If we start with only the upper component present, it
will have evolved completely into a state with only the
lower component after a time 7 = w/(2¢).

We now apply this framework to construct a quan-
tum search algorithm. The search problem is to
find items that satisfy certain criteria in an unsorted
database of N items. On a quantum computer, these
items are stored as n = log, N qubits with N or-
thonormal basis states |1),]2),...,|N) embodying a
binary encoding. To exploit quantum resonant search,
we construct the Hamiltonian

H(t) = a(t)H,, + b(t)H, + c(t), (5)

where H, = |y)(y| and H, = |z)(z]. The state
lv) = LN >_;14) is the equal-weight superposition of

the number basis. Since |z) is the state that satisfies

our searching criteria, we call it the answer state. In
general, there could be more than one state that sat-
isfy the searching criteria, and we will discuss those
scenarios shortly. H, embodies the oraclel”:'") which
encodes the answer.

As the initial state and the Hamiltonian have the
same permutation symmetry, we decompose the quan-
tum state |¢)) as

N_1|$L>+¢2

) = ¢n ;- ). (6)

1
— |z
~|

1 iy Lo
Here |2, ) = NS >~ 1), where the summation is

over all items other than the answer item. This con-
verts the system into a two-state model spanned by |z)
and |z ). The Hamiltonian (5) now takes the reduced
form

X a(t) +c(t) wa(t)
Hi (t) = 5 (7)
La(t)  b(t) +c(t)

where we have taken the large N limit. We choose

a(t) =pcos(wt), (8)
b(t) = — A+ pcos(wt), 9)
c(t) =A/2 — pcos(wt) . (10)

By comparing it to the Hamiltonian in Eq. (1), we
have ¢ = p/(2V/N). (Here we have invoked the rotat-
ing wave approximation. It could be avoided with
a slightly different, notationally more complicated
Hamiltonian.) As our initial state is mostly in the
upper component, (s|z ) &~ 1, we see that it will have
rotated to the desired item |z) after 7 = 7v/N/p. If p
is independent of IV, the time complexity of our algo-
rithm is O(V/N), the same as the Grover algorithm!’]
and the quantum adiabatic search algorithm.[®-'0]

Note that a(t) = 1 — %, b(t) = —e(t) = —% cor-
responds to the quantum search Hamiltonian of Farhi
and Gutmann.!*]

A simple variation on the basic search problem is
to allow k different valid answers. Similarly, we can
decompose the Hilbert space into two: one sub-space
spanned by the k answer items, and the rest space
spanned by the other items. As long as k < N, we
have in the large N limit

a(t) + c(t) £a(t)
Hi(t) = . (11)
~a(t)  b(t)+c(t)

The critical rotation time is then 7, = m+/N/k/p.
We define a monitor qubit by expanding the
Hilbert space to include an auxiliary qubit and gener-
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alizing a(t), b(t), and ¢(¢) in the form

a(t) =1 ® G,pcos(wt), (12)
b(t) =1 ® 6pcos(wt) — Al @1, (13)
é(t) zéi ®1—1® d.pcos(wt), (14)

where of course the second factor acts on the monitor
qubit. We again use the rotating wave approximation
and Eq. (6) to reduce the Hamiltonian. In the rotating
frame, we have

Hrot = (

On resonance |w — A| < € the time evolution operator
is

,A .
d )6 @14 €6, ®6,. (15)

U(t) ~ cos(et)l @ 1 —isin(et)6, @ 64, (16)

demonstrating that the monitor qubit rotates simul-
taneously with the computational qubits.
If the initial state is prepared to be

60 = (k) + STt ) ) 010y (1)

then following the dynamics given by Eq. (16), we find

1 VN -1
N |2 N |$J_>) ®0)
— i sin(et) <\/1N |z, )+ %

This allows us to make measurement on the monitor
qubit without collapsing the computational qubits to
their number states. Suppose we make a measurement
at time ¢ on the monitor qubit. If the result is |1), the

system collapses to (\/% |x1) + V\]/Vﬁ_l |x>) ® [1). In
the case, we measure the computational qubits and
will find the answer with probability (N — 1)/N. If

the result is |0), the system will collapse to state

(ﬁ |x) + ‘/\I/V? |xj_>> ®10), which is exactly the ini-
tial state |¢)(0)) we prepared. Therefore we can con-
tinue to run the algorithm without the need to re-
initialize the system. This could be useful, in the case
k is known, if we have small errors which take us off
exact resonance and introduce rare failures.

More interesting is the possibility to address the
general problem of determining &, when it is not given.
This is known as quantum counting problem.['" 1% We
will discuss two approaches: the first involves the con-
cept of predictive dissonance and the second involves
the concept of robust readout. Both of them are of
independent interest. They are characteristic poten-
tialities opened up by monitor qubits, and could be of
wider utility.

6(1)) = cos(et) ( )+

|:r>> ® [1). (18)

In Eq. (16) we must take

Wk

= —. 19
2N (1)
As a consequence, there will be times
2V N
(k) = Ir VN (20)

k'

where [ is an integer, when the monitor qubit (initially
|0)) is surely 0 and times

1 2V N

(k) = (1+ ) T 21

W= (+3) 27

when the monitor qubit is surely 1. The case k =0 is
special: then the monitor qubit is always 0.

Now given values k1, ko, we want to find times for
which ki predicts the monitor qubit to be 0 and ko
predicts it to be 1, or vice versa, i.e.,

N
t= 2117r£ = (2l + D)7

k1

VN
pVka

(22)

or

VN VN

= 2l27T

Wk ks

for integers l1,ls. We will refer to this phenomenon
where alternative hypotheses give contradictory pre-
dictions, exactly or with high probability, as “predic-
tive dissonance". In our context, it is related to the
physical phenomenon of beats. Predictive dissonance
is a way to insure progress. By measuring the monitor
qubit at such a time, we will rule out either ky or ks.
For example, in the case of Eq. (22), if the monitor bit
is measured to be 0, ko can be ruled out; if the monitor
bit is 1, k1 can be ruled out. And thus, if we are given
an upper bound k.., on the possible values of k, we
can home in a unique k after at most k. invocations
of predictive dissonance. Our numerical results show
that the number of invocationsis proportional to k%,
with o < 0.7 (see next section).

Unfortunately it is not always possible to achieve
exact predictive dissonance. For one thing, the oc-
currence of square roots of ky-and ko generally pre-
cludes the existence of such times. On the other hand,
by careful consideration of \/k;/ke we can find times
which satisfy our requirements to a good approxima-
tion. At such times, we can interpret the measurement
of the monitor qubit as ruling out k; or ko with high
probability. Of course, for efficiency we also want to
keep the times reasonably small.

We can assume that k1 < ko. First suppose that

t= (2l1 + 1)7T' (23)

,/% is rational, and write it in the reduced form 2°%

with a,b odd. Then if s < 0 we can satisfy Eq. (22)
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with
I, =271,
2[2 +1 = a,
277V N N
= TN mIN gy
v p
while if s > 0 we can satisfy Eq. (23) with
20 +1 =0,
l2 = 25_1CL,
25~V N N
t = VN < VN . (25)

ko T D

In the exceptional case s = 0 we do not get exact pre-
dictive dissonance, but we can get close, as follows. At
times t = 21271'1)% we will surely measure 0 if k = ko
on the monitor qubit, while if k = k; we will measure

1 with probability

Now elementary number theory instructs us that there
will be values of Iy < a for which

atl
2

For these values of Io we will have

lgb =

(moda) . (27)

Py = cos? 21@ > 0.75 (28)

since a > 3. Thus if we measure 1 we can eliminate
ko as a candidate, while if we measure 0 repeatedly
we can eliminate k; with high confidence. For each
measurement, the same time bound in Egs. (24) and
(25) applies.

We now switch to a different procedure, cruder but

Z—f is irrational.
(Number-theoretic refinements are certainly possible,
but they are beyond the scope of this paper.) To set
the stage, let us re-state the essence of our problem
in the form we will address it. We want to set up
predictive dissonance by finding a time, not too large,
such that on resonance measurement of the monitor
qubit will surely yield 0 if &k = ky but will have large
probability to yield 1 if & = ky. The first condition
reads

more general, which applies when

2pVka
VN
lomV/ N

- 2pVhks

phase; = lgmlﬁ. (30)
ko

t = 127'(',

phase,

and gives us

We want to insure that phase; is close to 4§ modulo

7, and also, in order for our time bound to hold, that
ls < ko, Let us consider the phase modulo 7 as
defining a circle. If 74/ % lies within the interval of
length % centered at 7, then simply by choosing l; = 1
we achieve

9 T

P, > cos = 0.75 (31)

as in Eq.(28). If 0§ = 7 % lies in the interval

0<6< %W, modulo 7, then steps in units of 6 will
move us monotonically into the sector just described.
If 6 lies in the interval %7‘(‘ < 0 < 7, then steps in
units of 6 will move us monotonically backward into
that sector. One can check that the number of steps
required is always consistent with our standard time
bound. Finally, the case §# = 0, corresponding to
k1 =0, is trivial.

We apply predictive dissonance to a class of prob-
lems, where the estimated maximum number of pos-
sible solutions k.x is independent of N. For many
hard instances of NP complete problems, this is in-
deed the case.l'"! We want to pinpoint the number
of solutions, ktrye € [0, kmax]. We choose pairs of k;
and ks in the range [0, kmax), and use predictive disso-
nance to eliminate one of them after the readout. In
general, the choice of k1 and ko will result in Z—f as
an irrational number. Then we could use the protocol
described in the previous section to choose the proper
time ¢, such that the measurement of monitor qubit
will surely yield 0 if £ = ky and will have high prob-
ability p to yield 1 if &k = k;. In fact, the protocol
described in the previous section ensures p > 0.75. To
further enhance the probability p, we take a sequential
J measurements of monitor qubit, and the readout will
be a binary string of length J, i.e., R =[0,0,1,0,...],
where 0 means no flip of the monitor qubit and 1 de-
notes the flip of the monitor qubit. If there is at least
one 1 in the readout R, we can eliminate ky. If the
readout R has only 0, then we can eliminate k; confi-
dently, because the probability of such a case appear-
ing is (1 — P)” < 1. The general time complexity of
our predictive dissonance protocol can be expressed as
O(k2,..N?). We expect # = 0.5 because the single run
time tpun o< vV N. As will be shown below, o depends
on the detail of choosing k1, ks pairs. In the following,
we discuss two pairing schemes: (1) half-size pairing
and (2) head-tail pairing.

At a given time, we always have a list of possible
{k;} and assume ko < k1 < - -+ < ky,. For the half-size
pairing scheme, we choose k1 = El and ko = EH,L /2; for
the head-tail pairing scheme, we choose k1 = EZ and
ko = k,,_;. In numerical simulation, for each fix kyax
and N, we random sample kiyye € [0, kmax], and follow
predictive dissonance protocol to find kine. And we
use ensemble averaged T to denote the average run-
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ning time to pinpoint ke for given NV and kyax. For
those two pairing schemes, we first fix k. = 50, and
then vary the number of items N in the database. The
result is shown in Fig.1(a). We find for both pair-
ing schemes, T o< v/N. This is reasonable, because
each run time is proportional to v/ N whichever pair-
ing scheme is chosen. Therefore, ensemble averaged
run time should also be proportional to v/N.

logg(f)
=
>
=

Half-size
Head-tail

—— B,=0.501, b,=10.13
— (1=0.500, b, =14.33

10.0 105 11.0 11.5 12.0 125 13.0
log2(N)

23.5F
23.0+
22.5+
22.0+
21.5+
21.0+
20.5+
20.0L

(b)

logg(T)

Half-size
Head-tail

—— ap=0.59, by =14.17
- ) ) ) —— a1=0.68, b1?14,33
10.0 10.5 11.0 11.5 12.0 12.5 13.0

logZ(kmax)

Fig.1l. Scaling behavior of ensemble averaged running
time T as a function of N and kmax. For a given N and
kmax, we uniformly sample ktrue € [0, kmax] 300 times.
For each k sample, we follow the predictive dissonance
protocol to pinpoint k£ and record the running time T,
and we choose repetition J = 6. The ensemble averaged
time T is plotted for each N and kmax. In subplot (a), it
shows T o« NP, where f is approximately 0.5; in subplot
(b), it shows T o kS ,x, and o depends on the details of
pairing schemes.

Next we study the relation between averaged run
time T and kmayx. We fix N = 20000 and vary kmax.
As shown in Fig.1(b), we find that T o k2, with
the power a depending on the pairing scheme. For
the half-size pairing, T o k%59 while for head-tail
pairing, T o k%58, We conjecture that the lower
bound for « is 0.5, because we can roughly estimate
that T X Emax\/N/kmax X VEmaxN. What pair-
ing scheme can achieve the optimal lower bound is
subject to further discussion. There are problems
where the number of solutions ke scale with N.I¥
If kirue o< N7, our numerical results indicate that
T x NOWJFO'S.

We now briefly describe a very different way to ex-
ploit monitor qubits to address the same problem. Itis

conceptually simpler and potentially much faster, but

it requires additional resources and it depends upon
assumed physical properties of qubits. Indeed, let us
assume that we have an ensemble containing several
monitor qubits, each of the kind described before, and
that they are localized particles - “spins” - carrying
a magnetic moment, all within a common small re-
gion. Then the systematic oscillation of the ensem-
ble of monitor bits will set up an oscillating magnetic
field, which can be read out with great sensitivity, for
instance using a SQUID. The frequency of that oscil-
lating field encodes the unknown value of k, accord-
ing to our preceding formulae. Use of several moni-
tor qubits, of course, also brings in protection against
errors in any one of them, and against small uncorre-
lated errors that affect all of them.

We have used resonance to construct quantum
search algorithms. In addition, with monitor qubits
we have implemented predictive dissonance and robust
readout, which allow us to find the number of answers
efficiently when that is unknown. Our algorithms il-
lustrate the importance of physical considerations in
assessing computational potential. The parameter p,
which governs overall speed, represents interaction en-
ergy at a particular frequency, and could become quite
large in a resonant context. Robust readout can in
principle obviate k& dependence altogether. We indi-
cated in broad terms how robust readout can be im-
plemented using spin qubits. Both this and possible
alternative implementations merit further study.
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