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ABSTRACT
We applied the semiclassical initial value representation (SC-IVR) method with the classical electron analog to deal with electronically non-
adiabatic reactive barriers and calculated the thermal reaction rate constant. The symmetric form of the flux–flux correlation function is used,
and the matrix element of the Boltzmannized flux operator is derived using imaginary-time path integral techniques. This combined use of
non-adiabatic SC-IVR and non-adiabatic path-integral sampling (NA-IVR&PI) is beyond the treatment of mean-field, and we analyze its per-
formance in comparison with some existing mean-field methods for different scenarios of potential energy surface. We found a systematically
better performance. One exception is the deep tunneling regime, where the mean-field ring-polymer instanton is superior. In the golden rule
limit, where all these mean-field methods break down, the significant advantage of NA-IVR&PI is shown by using the electronic states for
description of the dividing surface.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0200052

I. INTRODUCTION

The thermal rate constant is one of the most important quan-
tities in chemical reaction theory. Many methods are developed
aiming to give it a quantitatively accurate description. Among these
methods, the most rigorous one is to solve the problem in a fully
quantum mechanical manner, such as the quantum reactive scatter-
ing approaches and the discrete variable representation methods.1–3

However, for realistic complex systems, it is known that the compu-
tational cost of them grows exponentially with the nuclear degrees
of freedom (DOFs). To cope with this problem, one can resort to
the classical treatment, e.g., using molecular dynamics.4,5 However,
the quantum nature of the nuclei will be also of crucial importance

at relatively low temperatures, where the barrier height is no longer
small compared to thermal kinetic energy and tunneling has a
non-negligible contribution to the reaction rate.6,7 In these cases, the
classical methods are bound to fail.

This situation can become even more complicated when the
electronic DOFs are further involved.8,9 In these cases, the quan-
tum dynamics include not only quantum tunneling of the nuclei
but also electronic transitions.10–12 When the Born–Oppenheimer
approximation breaks down, the significant difference between adi-
abatic and non-adiabatic dynamics forces us also to handle the
non-adiabatic effects correctly.9,10,13 Therefore, it is fair to say that
an aspect that makes the problem of accurately simulating chemi-
cal reaction rates so challenging is the mixed quantum nature of the
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electrons and nuclei, which means that the imaginary-time statis-
tics and the real-time dynamics plus non-adiabatic effects need to be
considered in the same framework.

Apart from the fully quantum methods and the classical ones,
many methods developed in recent years can partially address all
these three aspects. These include methods based on the transition
state theory, the instanton method, and the ring-polymer molec-
ular dynamics (RPMD).13–18 These different families of methods
have their own advantages and shortcomings. Many variants of
them are also proposed to settle their problems. These variants
include ring-polymer surface hopping (RPSH), isomorphic RPMD,
and golden-rule instanton.19–22 A weakness in common is their rig-
orous definition in describing real-time quantum dynamics. The
lack of real-time coherence in these methods makes them unreliable
especially in the case of high temperature and strong non-adiabatic
effects where the reaction probability can be lowered mainly by
real-time non-adiabatic dynamics.23

A better defined theoretical method in describing quantum
dynamics is the so-called semiclassical initial value representa-
tion (SC-IVR). It is based on the semiclassical approximation of
the quantum propagator, which is made applicable by transfor-
mation of variables from root-searching form into initial value
representation.24–26 The quantum propagation is described by clas-
sical trajectory dynamics on the nuclear potential energy surface
(PES). By keeping additional information of the action and the phase
space volumes, it is capable of describing the quantum nature of
nuclei and has good potential on quantum dynamics. The method
has been successfully put into use in the calculation of vibra-
tional spectrum, where it has been greatly developed in the past
few decades with many improvements proposed to enhance its
numerical behavior and extend its usefulness.27–35

Besides spectral calculation, it can also be applied to solve
many other problems involving the quantum propagator.36–38 The
determination of rate constant is apparently one of them. Using
the formally exact expression of rate constant in terms of flux–side
correlation function,39 it can be straightforwardly transformed into
a double phase space integral. With the aid of an efficient and
accurate method for evaluating matrix elements involving the Boltz-
mann operator, the integral can be carried out to obtain very
precise results for different scenarios of the reaction barrier. There
are also many other extensions proposed to address the thermal
operators, including the linearized approximation,40 the classical
path approximation,37,41 and the forward–backward propagation
method,37 largely for adiabatic systems.

The SC-IVR method may also be applied to study non-
adiabatic dynamics.42 By bosonizing electron levels, the classical
electron analog gives a way to transform electronic DOFs to clas-
sical ones.43,44 This creates the possibility to deal with the electronic
and nuclear DOFs on the same footing. After the transformation,
the electron states are treated as coupled oscillators with parameters
linked to the nuclear coordinates. The Hamiltonian of the system
is then expressed in terms of additional virtual coordinates and
momenta, and the equation of motion can be solved by classical
dynamics. In so doing, the dynamics of the non-adiabatic system
can be handled within the same framework of SC-IVR for nuclear
motions. At the moment, it is fair to say that many attempts exist for
extending the SC-IVR to non-adiabatic systems.40,42–45 The simulta-
neous consideration of the contribution of electronic DOFs to the

nuclear thermal average and the real-time non-adiabatic dynam-
ics within the SC-IVR framework, however, is rarely studied. In
this paper, we explore this possibility and combine the methods of
treating non-adiabatic dynamics and Boltzmannized operators.

This paper is organized as follows: in Sec. II, we introduce the
basic ideas and explain the details of theories in the different aspects
of our method. In Sec. III, we present the results. In Sec. IV, a brief
summary and conclusions are given.

II. THEORY AND METHODS
A. The correlation functions and rate constant

The thermal rate constant of a chemical reaction can be
expressed in terms of the correlation function39 by

k(T) =
1

Qr(T)
lim

t→∞
Cfs(t), (1)

where Qr(T) is the reactant partition function and Cfs(t) is the
flux–side correlation function, defined as

Cfs(t) = Tr[F̂(β)eiĤ t/h̵ĥe−iĤ t/h̵
]. (2)

The notation F̂(β) stands for the Boltzmannized flux operator,

F̂(β) = e−βĤ /2F̂e−βĤ /2. (3)

The side operator ĥ = h(ŝ) is a projection operator, which takes
value of identity at the asymptotic product region and is zero at the
asymptotic reactant region. It is usually chosen to be a Heaviside
function of the reactive coordinate. The flux operator is the time
derivative of ĥ, which equals

F̂ =
i
h̵
[Ĥ, ĥ], (4)

where Ĥ is the Hamiltonian of the system.
By taking the time derivative of the flux–side correlation, one

obtains the flux–flux correlation function,

dCfs(t)
dt

= Tr[F̂(β)eiĤ t/h̵F̂e−iĤ t/h̵
] ≡ Cff(t). (5)

By rearranging the commutative exponential terms, one can write it
in a symmetric form,

Cff(t) = Tr[F̂(
β
2
)eiĤ t/h̵F̂(

β
2
)e−iĤ t/h̵

], (6)

which is numerically more efficient.38

B. Semiclassical initial value representation
The SC-IVR propagator can be expressed as a phase-space

integral,26

e−iĤ t
=∫ dq0 ∫ dp0[∣

∂qt
∂p0
∣/(2πih̵)D

]

1/2
eiSt(qt ,q0)/h̵∣qt⟩⟨q0∣, (7)
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which originates from the semiclassical approximation of the
quantum propagator46 and is made computationally useful by trans-
forming variables to the initial phase space.25 Here and after, D refers
to the total DOFs of the system.

A useful different formulation of the propagator is the coherent
state representation developed by Herman and Kluk,25,26

e−iĤ t/h̵
=

1
(2πh̵)D ∫ dp0 ∫ dq0Ct(p0, q0)

× eiSt(p0 ,q0)/h̵∣pt , qt⟩⟨p0, q0∣. (8)

Here qt , pt is the coordinate and momentum at time t, with
the phase-space trajectory starting from q0, p0 and dominated by
classical dynamics. St is the action along this trajectory,

St(p0, q0) = ∫

t

0
dt′pt′ q̇t′ −H(pt′ , qt′). (9)

Ct is the Herman–Kluk pre-exponential factor,

Ct(p0, q0) =

¿
Á
ÁÀ 1

2D ∣
∂qt
∂q0
+ Γ−1 ∂pt

∂p0
Γ − ih̵

∂qt
∂p0

Γ +
i
h̵

Γ−1 ∂pt
∂q0
∣, (10)

with all partial derivatives defined under classical trajectory dynam-
ics and Γ being the width matrix of coherent states in Eq. (8), which
are minimum-uncertainty wave packets,

⟨x∣p, q⟩ = (
det Γ

πD )
1/4

e−
1
2 (x−q)TΓ(x−q)+ i

̵h pT(x−q). (11)

Its value is arbitrary but usually chosen with respect to the character-
istic frequency of the system. Both formulations of the semiclassical
propagator give quantum exact results for potentials no more than
quadratic, including free particles and harmonic oscillators, and also
have good accuracy in many other situations.

The integrand in Eq. (8) is completely determined by the initial
position and momentum of the nuclei and the potential energy sur-
face they move on. Thus, one can substitute the expression for the
quantum propagator and obtain the SC-IVR formula of the observ-
ables of interest. Since we are dealing with multiple propagators
in one expression, for simplicity and conciseness, we will use the
notations z ≡ (p, q), F̂β ≡ F̂(β), and

e−iĤ t/h̵
= ∫ dz0∣zt⟩⇜⟨z0∣, (12)

where the constant factor is absorbed in dz0 and the symbol ⇜ is an
abbreviation for the factor Ct(z0)eiSt(z0)/h̵ in the integrand. We will
then use ⇝ for its complex conjugate. Their values must be eval-
uated according to the classical trajectory implied by the initial or
final state that they point to.

Substituting Eq. (12) into Eq. (6), one gets the flux–flux
correlation function under the SC-IVR as

Cff(t) = Tr∫ dz0 ∫ dz′0F̂β/2∣z
′
0⟩⇝⟨z

′
t ∣F̂β/2∣zt⟩⇜⟨z0∣

= ∫ dz0 ∫ dz′0⟨z0∣F̂β/2∣z
′
0⟩⇝⟨z

′
t ∣F̂β/2∣zt⟩⇜. (13)

The above double integral in phase space can be evaluated by Monte
Carlo sampling of trajectory pairs. Furthermore, if one chooses the
weighting function as

W(z0, z′0)∝ ∣⟨z0∣F̂ β/2∣z
′
0⟩∣

2, (14)

then the Monte Carlo average can be rewritten as38

Cff(t) = Cff(0)⟨
⇝⟨z′t ∣F̂β/2∣zt⟩⇜

⟨z′0∣F̂β/2∣z0⟩
⟩

W

. (15)

The same kind of matrix element in the numerator and denominator
results from the symmetric form of the flux–flux correlation [Eq. (6)]
and is friendlier for implementation. The averaged function is always
equal to 1 at t = 0 and very smooth at short times, implying good
numerical stability. This will, in some sense, justify the choice of this
correlation function formula.

Now, the last thing to be resolved before the Monte Carlo sam-
pling can be done is the evaluation of coherent state matrix elements
of the Boltzmannized operator F̂β/2.

C. Electronically non-adiabatic dynamics
In order to describe dynamics with multiple electronic states,

we use the classical electron analog to transform to classical
dynamics.43,44 The Hamiltonian of an electronically non-adiabatic
system is of the form

H =
p2

2m
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

V11(x) V12(x)

V21(x) V22(x)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (16)

where p, x refers to nuclear DOFs. When those of the electrons
are used in later discussions, we will denote them with a subscript
“e.” Here, we only consider the simplest case of two diabatic elec-
tronic basis, but it is straightforward to extend the formalism to any
number of diabatic states.

By making linear transformation from the electronic Hilbert
space to the Fock space of two bosonic modes,

∣0⟩elec → ∣1102⟩, ∣1⟩elec → ∣0112⟩, (17)

the electronic Hamiltonian can be rewritten as

Ĥe = ∑
ij∈{1,2}2

â†
i Vij(x)âj. (18)
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The original system is mapped into the subspace with parti-
cle number n1 + n2 = 1. Transforming the ladder operators to
electronic coordinate and momentum by

x̂i,e =
1
√

2
(â†

i + âi), p̂i,e =
i
√

2
(â†

i − âi), (19)

one finally gets the Hamiltonian in terms of classical position and
momentum of the electrons. In a two-level non-adiabatic system, the
corresponding Hamiltonian reads

H =
p2

2m
+

2

∑
i=1

Vii(x)
2
(x2

i,e + p2
i,e − 1)

+
V12(x) + V21(x)

2
(x1,ex2,e + p1,ep2,e). (20)

To apply SC-IVR to this non-adiabatic system, the Hamiltonian
in Eq. (20) must be used to derive the dynamics. The phase space is
now composed of both nuclear and electronic DOFs. The propagator
is in the same form as Eq. (12), i.e.,

e−iĤ t/h̵
= ∫ dz0 ∫ dw0∣ztwt⟩⇜⟨z0w0∣. (21)

As stated, z and w refer to the nuclear and electronic vari-
ables, respectively. The width parameters of the electronic DOFs
are set to 1, which is inherent from the form of the
transformation.

D. Non-adiabatic extension of path-integral
based methods

When dealing with things related to quantum thermal average,
path-integral methods and polymers are almost inevitable in com-
putations. The mainstream methods, including quantum transition
state theory (QTST), instanton method, and RPMD, all involve a
ring polymer connected with harmonic spring potential whose total
energy corresponds to the action of closed trajectories in imaginary
time.16,23 In order to extend them to non-adiabatic systems, one nat-
ural way, in principle, is to introduce the electronic states in the
imaginary-time action and then taking partial trace to obtain the
effective potential for nuclear degrees of freedom.

In this way, the ring-polymer potential for a single-state system,

Vn(x) =
n

∑
k=1
[

1
2

mω2
n(xj − xj+1)

2
+ V(xj)], (22)

will be replaced by its non-adiabatic analog,13,47

Vn(x) =
n

∑
k=1

1
2

mω2
n(xj − xj+1)

2
−

1
βn

ln Tr
n

∏
k=1

e−βnV̂ (xk), (23)

which reproduces the nuclear probability density for the polymer.
The QTST and instanton methods extended in this way will be used
for comparison in this paper to which we refer as mean-field QTST
(MF-QTST) and mean-field ring-polymer instanton (MF-RPI). By
MF, we mean the fact that the partial trace on electronic DOFs
is used for the sampling of the nuclear partition functions. With
MF-QTST (MF-RPI), one simply performs a QTST simulation (RPI
minimization) using the effective potential in Eq. (23).

E. Path integral method
for the Boltzmannized operator

To address the matrix elements in Eq. (15), we use the
imaginary-time path integral technique with Monte Carlo sampling.
It has been proven to work well on adiabatic reactive systems.38 By
taking imaginary-time slices, one can approximate the Boltzmann
operator as

e−βĤ /2
= (e−ΔβĤ

)
P/2
≃ (e−ΔβT̂ /2e−ΔβV̂ e−ΔβT̂ /2

)
P/2

, (24)

where Δβ = β/P. Then, by inserting identity operators, one gets a
path-integral form,

F f i ≡ ⟨z f ∣F̂(β)∣zi⟩

= ∫ dx1dx2 ⋅ ⋅ ⋅dxP⟨z f ∣e
−ΔβT̂ /2

∣xP⟩

× ⟨xP∣e−ΔβT̂
∣xP−1⟩ . . . ⟨xP/2+2∣e

−ΔβT̂
∣xP/2+1⟩

× ⟨xP/2+1∣e
−ΔβT̂ /2F̂e−ΔβT̂ /2

∣xP/2⟩

× ⟨xP/2∣e
−ΔβT̂
∣xP/2−1⟩ . . . ⟨x2∣e−ΔβT̂

∣x1⟩

× ⟨x1∣e−ΔβT̂ /2
∣zi⟩e

−Δβ
P
∑
k=1

V(xk)
. (25)

Here, the subscript i and f stand for the initial and final states
of the nuclei, respectively. To simplify the notation, we consider a
one-dimensional case in which x is the reaction coordinate. Assum-
ing that the side projection operator can be interpreted as a dividing
surface ĥ = Θ(x̂), the terms in the equation above all have analytical
expressions, and

F f i = D f i ∫ dx1dx2 ⋅ ⋅ ⋅dxP(xP/2+1 − xP/2)

× exp{−
ΓβΓ

2(Γβ + Γ)
[(x f − xP)

2
+ (x1 − xi)

2
]

−
Γβ

4

P

∑
k=2
(xk − xk−1)

2
−

Γβ

4
(xP/2+1 + xP/2)

2

+
i
h̵

Γβ

(Γβ + Γ)
[p f (x f − xP) + pi(x1 − xi)] −

β
P

P

∑
k=1

V(xk)},

(26)

where Γβ = 2Δβ−1
= 2P/β. D fi is relevant to the initial and final

states, and independent of the bead positions inserted. Equa-
tion (26) can be reformulated to an expectation value under
multi-dimensional Gaussian distribution,

F f i = D f i∏
j

√
2πσj⟨(xP/2+1 − xP/2) exp{−

β
P

P

∑
k=1

V(xk)}

× exp{
i
h̵

Γβ

(Γβ + Γ)
[p f (x f − xP) + pi(x1 − xi)]}⟩

w

,

w = exp{−
ΓβΓ

2(Γβ + Γ)
[(x f − xP)

2
+ (x1 − xi)

2
]

−
Γβ

4

P

∑
k=2
(xk − xk−1)

2
−

Γβ

4
(xP/2+1 + xP/2)

2
}, (27)

and, thus, can be calculated by Monte Carlo sampling.38
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Now, we extend this Boltzmannization to non-adiabatic sys-
tems. To the best of our knowledge, it has not been studied. The
formulation is nearly unchanged, except for the potential term due
to the fact that the potential operators in this case are not scalar or
commutable anymore. Adding electronic basis to the inserted iden-
tity resolution during derivation of Eq. (25), one obtains the correct
form of the term,

P exp{−
β
P

P

∑
k=1

V̂(xk)} =
1

∏
k=P

e−βV̂ (xk)/P, (28)

where P is the path-ordering operator, whose meaning is self-
explained by the formula. This is exactly the same modification as
introduced in Sec. II D, except that in this case, we are dealing with a
linear polymer and the two ends are replaced by coherent state wave
packets. The final path-integral form is

⟨z f w f ∣F̂(β)∣ziwi⟩

= ∫ dx1dx2 ⋅ ⋅ ⋅dxP⟨z f ∣e
−ΔβT̂ /2

∣xP⟩

× ⟨xP∣e−ΔβT̂
∣xP−1⟩ . . . ⟨xP/2+2∣e

−ΔβT̂
∣xP/2+1⟩

× ⟨xP/2+1∣e
−ΔβT̂ /2F̂e−ΔβT̂ /2

∣xP/2⟩

× ⟨xP/2∣e
−ΔβT̂
∣xP/2−1⟩ . . . ⟨x2∣e−ΔβT̂

∣x1⟩

× ⟨x1∣e−ΔβT̂ /2
∣zi⟩⟨w f ∣P̂

1

∏
k=P

e−βV̂ (xk)/PP̂∣wi⟩, (29)

where

P̂ = ∫ dx∣x, 0110⟩⟨x, 0110∣ + ∣x, 1001⟩⟨x, 1001∣. (30)

It is the projection operator of the single excitation subspace. This
projection is essential. Otherwise, the electronic part of coherent

state will contain components from the ground vibrational state or
higher excited states that are spurious due to the bosonic mapping.
This is especially important when one wants to treat the mapped
electronic coordinates with path-integral.48

Despite the dividing surface formulation described above,
sometimes, it is also appropriate to define projection operators based
on electronic states. Let us assume that the second electronic state is
the product state. The side operator in this case is

ĥ =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (31)

In addition, the flux operator is still defined by Eq. (4),

F̂ =
i
h̵
[Ĥ, ĥ] =

i
h̵

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 V12(x)

−V12(x) 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (32)

which contains no derivatives with respect to coordinate. The
term in the middle involving the flux operator is now a Gaussian
integral,

⟨xP/2+1∣e
−ΔβT̂ /2F̂e−ΔβT̂ /2

∣xP/2⟩

∝ ∫ dxF̂ exp{−
Γβ

4
(x −

xP/2+1 + xP/2
2

)
2
}

= −
σy

h̵ ∫
dxV12(x) exp{−

Γβ

4
(x −

xP/2+1 + xP/2
2

)
2
}. (33)

It can be evaluated by very low-order approximations when the
width of the Gaussian is small enough, which is usually the case
with a properly chosen bead number P. Following the previous steps
in this section, one can derive the path-integral form with this flux
operator,

⟨z f w f ∣F̂(β)∣ziwi⟩ =∫ dx1dx2 ⋅ ⋅ ⋅dxP⟨z f ∣e
−ΔβT̂ /2

∣xP⟩ × ⟨xP∣e−ΔβT̂
∣xP−1⟩ . . . ⟨xP/2+2∣e

−ΔβT̂
∣xP/2+1⟩

× ⟨w f ∣P̂
P/2+1

∏
k=P

e−βV̂ (xk)/P⟨xP/2+1∣e
−ΔβT̂ /2F̂e−ΔβT̂ /2

∣xP/2⟩
1

∏
k=P/2

e−βV̂ (xk)/PP̂∣wi⟩

× ⟨xP/2∣e
−ΔβT̂
∣xP/2−1⟩ . . . ⟨x2∣e−ΔβT̂

∣x1⟩ × ⟨x1∣e−ΔβT̂ /2
∣zi⟩. (34)

In both formulations, the matrix element will be localized around
the dividing surface or potential crossings, which makes the
weighting function in Eq. (14) an appropriate and efficient
one.

The zero-time correlation function Cff(0) can be formulated in
the same manner, with two flux operators and twice the number of
slices. It only needs to be determined once before initial condition
sampling and, thus, can be calculated to a very good precision.
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III. RESULTS AND DISCUSSIONS
A. Exponential crossing model

The diabatic Hamiltonian for this simple and precise avoided
crossing model is

Ĥ =
p̂ 2

2m
+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

AeBx Δ

Δ Ae−Bx

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (35)

where x and p refer to nuclear coordinate and momentum and
Δ is the coupling matrix element. The fixed parameters are m = 2000,
A = 0.02, and B = 2, all in atomic unit so that h = 1. A schematic
plot of the potential is shown in Fig. 1. The adiabatic energy surface
exhibits a gap of 2Δ at x = 0 while the diabatic energies cross here.
As can be seen from the step-like curve of the diabatic angle, the
derivative coupling is maximized around the gap. In the asymptotic
reactant and product region, the electron can only live on the corre-
sponding diabatic (and also adiabatic) basis since the energy of the
other is too large. This indicates that the reaction must be accom-
panied by electron transition and, thus, can be strongly influenced
by the coupling strength. For Δ→ 0, the coupling can be regarded
as perturbation and the reaction rate constant is predicted to be
∼ Δ2 according to the Fermi golden rule.

The dividing surface is chosen such that h = Θ(x). Pairs of ini-
tial conditions are generated by the Metropolis algorithm with the
weighting function in Eq. (14). They are then propagated for long
enough time for the flux–flux correlation function to converge to
zero. The trapezoidal rule is applied on equally spaced time grids
for numerical integration to get the flux–side correlation function.
The number of beads is chosen to be P = 4 at 1000 K and is adjusted
to be inversely proportional to temperature. To accelerate Monte
Carlo sampling of matrix elements of the Boltzmannized operator,

FIG. 1. Schematic plot of diabatic potential surface, adiabatic energies, and dia-
batic angle of the avoided crossing model with Δ = 0.004. The adiabatic angle
with respect to reactant electronic states is scaled and plotted in green dots. V11
and V22 are defined in Eq. (35).

FIG. 2. Arrhenius plots of the avoided crossing model. The sharp turns on instanton
results indicate the breakdown point (the crossover temperature).

the random numbers are drawn from a Sobol quasi-random num-
ber generator, and the sample size is set to 214. About 106 trajectories
are propagated for each data point to reach a statistical error less
than 2%. The Arrhenius plots are shown in Fig. 2. It is based on
the flux–flux and flux–side correlation functions, of which some are
plotted in Fig. 3. One can see that these functions are well-converged
from their imaginary parts whose expected values are zero. In Fig. 2,
quantum exact values, MF-QTST results, and MF-RPI results are
taken into comparison.

For Δ = 4 × 10−3 (upper panel), our NA-IVR&PI results are
very accurate at high temperatures, while at low temperatures, there
is an error of about 20% in the rate constant. This is due to the
systematic error of the semiclassical approximation on the descrip-
tion of deep barrier tunneling. However, it still works better than

AIP Advances 14, 035023 (2024); doi: 10.1063/5.0200052 14, 035023-6

© Author(s) 2024

 21 July 2024 13:45:26

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 3. The calculated correlation functions of the avoided crossing model. The parameters are T = 1000 K and Δ = 4 × 10−3 for the upper panel and T = 500 K and Δ
= 4 × 10−4 for the lower panel. All correlation functions are normalized by dividing by the initial flux–flux correlation Cff(0).

the MF-QTST method, which is only approximately accurate at both
high and low temperature regions. The instanton methods work well
at very low temperatures, but they break down due to instanton col-
lapse above certain temperature and are no longer available at this
region.

For Δ = 4 × 10−4 (lower panel), the low-temperature region
shows the same trend as mentioned above, but the high-temperature
region is different because it is reaching the golden rule limit where
Δ/kT → 0. The system in this limit shows a strong non-adiabatic
effect and recrossing behavior, and all tested methods tend to break
down here. The reason for the breakdown of the NA-IVR&PI
method can be intuitively understood from the lower panel of Fig. 3.
The flux–side correlation function in this case is not monotonic and
converges to a small value with respect to its maximum. The abso-
lute error of the flux–flux correlation is small at all time, but the
sign canceling makes it accumulated and results in a relatively large
error after integration.

In order to overcome the difficulty, we make use of the flexibil-
ity of choice discussed in Sec. II E and use the projection operators
based on electronic states as specified by Eq. (32). The rate constant
is independent of this choice and shall keep the same value, while
the shape of the correlation functions will change accordingly. In
the weak coupling limit, the zero-time flux–flux correlation tends
to zero at the order of Δ2 so that we can expect a good numerical
behavior of the normalized flux–side correlation. The correlation
functions obtained under different projection operators are plot-
ted in Fig. 4, and the result from the new one is marked in Fig. 2
as NA-IVR&PI-e. While the dividing surface formulation totally
breaks down, the choice based on electronic states yields very well-
behaved and accurate results. In this way, we have circumvented the
problem while keeping the main body of the theoretical framework.
By reasonably choosing the projection operator, it is now possi-
ble to handle almost all parameter ranges within this NA-IVR&PI
framework.
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FIG. 4. Flux–side correlation functions calculated under T = 1000 K and Δ = 4
× 10−4. The upper panel is based on the dividing surface, while the lower panel is
based on the electronic state.

IV. CONCLUSION
In this paper, we implemented the non-adiabatic semi-

classical initial value representation with path-integral sampling
(NA-IVR&PI) and investigated the correlation functions and the
reaction rate constant of the exponential avoided crossing model.
With the aid of electronic state-based dividing surface, the method
is capable of handling the extreme case of the golden rule limit. The
results are accurate enough compared to other existing methods,
and it works well in almost all scenarios with different parameters,
showing very good generality.

These outcomes are promising and show the potential of the
NA-IVR&PI method. In the future, it might be a powerful tool for
the investigation of chemical reactions.
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Woerner, J. Vaníček, and U. Rothlisberger, Struct. Dyn. 4, 061510 (2018).
9Y. Mao, B. Buren, Z. Yang, and M. Chen, J. Phys. Chem. A 126, 5574 (2022).
10C. Zener and R. H. Fowler, Proc. R. Soc. London, Ser. A 137, 696 (1932).
11J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
12J. C. Tully, J. Chem. Phys. 137, 22A301 (2012).
13T. J. H. Hele, “An electronically non-adiabatic generalization of ring polymer
molecular dynamics,” Master’s thesis, Exeter College University of Oxford, 2011;
arXiv:1308.3950 [physics.chem-ph].
14J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 131, 214106 (2009).
15J. O. Richardson, J. Chem. Phys. 144, 114106 (2016).
16J. O. Richardson, Faraday Discuss. 195, 49 (2016).
17I. Affleck, Phys. Rev. Lett. 46, 388 (1981).
18W. H. Miller, J. Chem. Phys. 62, 001899 (2008).
19P. Shushkov, R. Li, and J. C. Tully, J. Chem. Phys. 137, 22A549 (2012).
20F. A. Shakib and P. Huo, J. Phys. Chem. Lett. 8, 3073 (2017).
21J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015).
22E. R. Heller and J. O. Richardson, J. Chem. Phys. 152, 034106 (2020).
23T. J. H. Hele, “Quantum transition-state theory,” Ph.D. thesis, University of
Cambridge, 2014; arXiv:1408.0996 [physics.chem-ph].
24W. H. Miller, J. Chem. Phys. 53, 3578 (1970).
25M. F. Herman and E. Kluk, Chem. Phys. 91, 27 (1984).
26W. H. Miller, J. Phys. Chem. A 105, 2942 (2001).
27A. L. Kaledin and W. H. Miller, J. Chem. Phys. 118, 7174 (2003).

AIP Advances 14, 035023 (2024); doi: 10.1063/5.0200052 14, 035023-8

© Author(s) 2024

 21 July 2024 13:45:26

https://pubs.aip.org/aip/adv
https://doi.org/10.1146/annurev.pc.39.100188.001533
https://doi.org/10.1021/j100382a007
https://doi.org/10.1063/1.451426
https://doi.org/10.1063/1.1687680
https://doi.org/10.1126/science.1080715
https://doi.org/10.1038/s41586-023-05727-z
https://doi.org/10.1063/1.4996816
https://doi.org/10.1021/acs.jpca.2c04319
https://doi.org/10.1063/1.459170
https://doi.org/10.1063/1.4757762
https://arxiv.org/abs/1308.3950
https://doi.org/10.1063/1.3267318
https://doi.org/10.1063/1.4943866
https://doi.org/10.1039/c6fd00119j
https://doi.org/10.1103/physrevlett.46.388
https://doi.org/10.1063/1.430676
https://doi.org/10.1063/1.4766449
https://doi.org/10.1021/acs.jpclett.7b01343
https://doi.org/10.1063/1.4932361
https://doi.org/10.1063/5.0013521
https://arxiv.org/abs/1408.0996
https://doi.org/10.1063/1.1674535
https://doi.org/10.1016/0301-0104(84)80039-7
https://doi.org/10.1021/jp003712k
https://doi.org/10.1063/1.1562158


AIP Advances ARTICLE pubs.aip.org/aip/adv

28A. L. Kaledin and W. H. Miller, J. Chem. Phys. 119, 3078 (2003).
29M. Ceotto, G. F. Tantardini, and A. Aspuru-Guzik, J. Chem. Phys. 135, 214108
(2011).
30M. Ceotto, G. Di Liberto, and R. Conte, Phys. Rev. Lett. 119, 010401 (2017).
31G. Di Liberto, R. Conte, and M. Ceotto, J. Chem. Phys. 148, 014307 (2018).
32G. Di Liberto, R. Conte, and M. Ceotto, J. Chem. Phys. 148, 104302 (2018).
33R. Conte, L. Parma, C. Aieta, A. Rognoni, and M. Ceotto, J. Chem. Phys. 151,
214107 (2019).
34G. Botti, M. Ceotto, and R. Conte, J. Chem. Phys. 155, 234102 (2021).
35J.-X. Zeng, S. Yang, Y.-C. Zhu, W. Fang, L. Jiang, E.-G. Wang, D. H. Zhang, and
X.-Z. Li, J. Phys. Chem. A 127, 2902 (2023).
36D. E. Skinner and W. H. Miller, Chem. Phys. Lett. 300, 20 (1999).

37Y. Zhao and W. H. Miller, J. Chem. Phys. 117, 9605 (2002).
38T. Yamamoto, H. Wang, and W. H. Miller, J. Chem. Phys. 116, 7335 (2002).
39W. H. Miller, J. Chem. Phys. 61, 1823 (1974).
40X. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. 109, 7064 (1998).
41W. H. Miller, J. Chem. Phys. 55, 3146 (1971).
42W. H. Miller, J. Phys. Chem. A 113, 1405 (2009).
43X. Sun and W. H. Miller, J. Chem. Phys. 106, 6346 (1997).
44G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
45G. Tao, J. Phys. Chem. A 117, 5821 (2013).
46J. H. van Vleck, Proc. Natl. Acad. Sci. U. S. A. 14, 178 (1928).
47S. Ranya and N. Ananth, J. Chem. Phys. 152, 114112 (2020).
48N. Ananth and T. F. Miller, J. Chem. Phys. 133, 234103 (2010).

AIP Advances 14, 035023 (2024); doi: 10.1063/5.0200052 14, 035023-9

© Author(s) 2024

 21 July 2024 13:45:26

https://pubs.aip.org/aip/adv
https://doi.org/10.1063/1.1589477
https://doi.org/10.1063/1.3664731
https://doi.org/10.1103/physrevlett.119.010401
https://doi.org/10.1063/1.5010388
https://doi.org/10.1063/1.5023155
https://doi.org/10.1063/1.5133144
https://doi.org/10.1063/5.0075220
https://doi.org/10.1021/acs.jpca.3c00576
https://doi.org/10.1016/s0009-2614(98)01290-1
https://doi.org/10.1063/1.1517044
https://doi.org/10.1063/1.1464539
https://doi.org/10.1063/1.1682181
https://doi.org/10.1063/1.477389
https://doi.org/10.1063/1.1676560
https://doi.org/10.1021/jp809907p
https://doi.org/10.1063/1.473624
https://doi.org/10.1103/physrevlett.78.578
https://doi.org/10.1021/jp404856p
https://doi.org/10.1073/pnas.14.2.178
https://doi.org/10.1063/1.5132807
https://doi.org/10.1063/1.3511700

