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The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous,
and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical
in nature. In recent years, because of the development of computer simulation methods and computational power, the
influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems
has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles
underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with
the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to
show how this influence of NQEs in realistic systems is simulated in practice.

Keywords: ab initio calculations, isotope, molecular dynamics, hydrogen bonds

PACS: 31.15.A–, 67.63.–r, 71.15.Pd, 82.30.Rs DOI: 10.1088/1674-1056/25/1/013104

1. Introduction
The hydrogen bond (HB) is a generally weak but ubiqui-

tous intermolecular interaction. It is responsible, for example,
for holding together the two strands of DNA molecules and
many phases of water. As such, understanding the behaviors of
HBs is lying at the core of many studies concerning the behav-
iors of water and biomolecules. The small mass of hydrogen
(H) means that many of these problems are quantum mechani-
cal in nature,[1–7] although all too often these nuclear quantum
effects (NQEs) are neglected. These NQEs are essential for
rationalizing many phenomena of te H-bonded systems, es-
pecially where quantum tunneling and zero-point motion are
concerned. For example, starting from the 1950s, it has been
known that replacing H by deuterium (D) in H-bonded molec-
ular crystals with electronic structures unchanged can result
in obvious variations of the lattice constants.[8] This is cur-
rently known as the Ubbelohde effect.[9] In enzyme reactions,
the proton tunneling along HBs is referred to as “nature’s sub-
way”. By using a neutron Compton scattering experiment, a
picture concerning the impact of NQEs on the real space de-
localization and vibrational properties of the proton in liquid
water was also revealed.[10,11] Most recently, a cryogenic scan-
ning tunneling microscope (STM) experiment even confirmed
the isotope-dependent switching rate of water tetramer on salt
between its two chirality states, which could only be rational-
ized by considering the NQEs.[12]

From the theoretical perspective, accurate computer sim-
ulations of these phenomena require an accurate quantum me-
chanical description of the finite-temperature nuclear fluctua-
tions in real polyatomic systems. A natural choice is to con-
struct a high-dimensional Schrödinger equation for the many-
body entity of the nuclei. By solving the eigenstate wave-
functions of this Schrödinger equation, one can observe not
only the statistical but also the dynamical properties of the
system under investigation related to the quantum nature of
the nuclei. Over the last ∼ 20 years, this method has been
extremely successful in describing gas-phase reactions.[13–17]

However, because of the notorious scaling problem in map-
ping the high-dimensional potential energy surface (PES)
and solving the Schrödinger equation, the application of this
method has been seriously limited to systems with less than
∼ 6 atoms. For more realistic polyatomic systems and con-
densed matters, a practical method is highly desired. Thanks
to the development of the path-integral representation of quan-
tum mechanics starting from the late 1940s,[18–21] a scheme
practical for large polyatomic systems and condensed mat-
ters in which not only the thermal effects but also the NQEs
can be accounted for statistically has been systematically pre-
sented by Feynman and Hibbs.[22] Based on such a founda-
tion, the molecular dynamics (MD) simulation technique was
combined with this path-integral representation of quantum
mechanics, and a series of path-integral molecular dynam-
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ics (PIMD) simulations were carried out in the 1980s, as re-
ported by Chandler, Parrinello, and Berne et al. in Refs. [23]–
[25], respectively. Analogous to these MD based simula-
tions, the Monte–Carlo (MC) sampling technique can also
be used. At roughly the same time, the properties of liquid
helium, including its superfluidity, were systematically stud-
ied by Ceperley and Pollock using path-integral Monte–Carlo
(PIMC) simulations.[26–29] In these PIMD/PIMC simulations,
the NQEs are accounted for on the same footing as the thermal
effects when the statistical properties are evaluated, as will be
explained later in Section 2. Therefore, when comparing their
results with the ones obtained in the MD simulations, in which
the nuclei are treated classically, the NQEs can be addressed
in a very clean manner.

These comparisons set up a rigorous framework for the
NQEs to be investigated statistically, which is still used nowa-
days. However, in these early PIMD and PIMC simulations,
researches often resorted to empirical potentials for descrip-
tions of the interatomic interactions. When chemical reac-
tions occur, e.g., a proton transfers along a HB, such a sim-
ple parametrization of the interatomic interactions may eas-
ily fail. To cope with these problems, in which the impact of
the NQEs is usually more interesting, an effort toward com-
bining the ab initio electronic structure calculations with the
PIMD/PIMC sampling techniques has been made since the
mid 1990s, first within the framework of Car–Parrinello (CP)
MD (see e.g., Tuckerman, Marx, and Parrinello et al.’s work
in Refs. [1], [30], and [31]) and later by directly using Born–
Oppenheimer (BO) MD/MC.[6,7,32–34] These methods allow
for bond making and breaking events, as well as the thermal
and quantum nuclear fluctuations to be addressed in a seamless
manner based on the forces computed “on-the-fly” as the sys-
tem evolves, therefore making PIMD/PIMC simulations for
problems with complicated chemical environments possible.
Currently, not only different functionals within the density-
functional theory (DFT)[35–37] but also many traditional quan-
tum chemistry methods such as MP2[38,39] can be used in de-
scriptions of the electronic structures and consequently the
interatomic interactions. With such a wide range of choices
for the electronic structures, one can safely rely on the results
obtained from such simulations, if the accuracy of the inter-
atomic interaction description and the sampling sufficiency are
ensured. We note, however, that such an ensurance is far from
being trivial.[30,35,36]

The above-mentioned recipe allows the NQEs to be de-
scribed in a clean manner, if the molecular simulation time is
long enough to address the issue of interest. A common prob-
lem for most molecular simulation techniques, however, is that
the timescale one can afford is not long enough to allow the
system to travel between different stable states, thereby hinder-
ing a direct evaluation of the free-energy differences between

different meta-stable states. In such cases, to determine the
relative stability of these different meta-stable states without
resorting to the coarse-grained models,[40] the method one of-
ten chooses is to enhance the sampling efficiency either by im-
posing constraints or modifying the effective PES.[41–44] How-
ever, if it is the case that within the molecular simulation time,
the system can stay within the local minima of the PES with
all spatial configurations close to it explored, a comparison of
the free energies associated with each local minimum directly
without requiring the system to travel between different meta-
stable states provides an alternative. In such cases, a method
with which the free energy of each meta-stable state can be
calculated is highly desired. When the influence of NQEs on
these free energies needs to be quantified, a combination be-
tween the thermodynamic integration (TI) method and PIMD
is a natural choice.[45,46] In the following, in addition to a gen-
eral introduction to ab initio PIMD and its application to the
studies of some H-bonded systems, a combination of the TI
method with ab initio PIMD along with applications of this
method to the free-energy calculations of some H-bonded sys-
tems will also be discussed.

The paper is organized as follows. An introduction to the
ab initio PIMD method and its combination with TI, as well
as the computational setups, are given in Section 2. In Section
3, we take a basic question in physics and chemistry, i.e., what
is the impact of NQEs on the strength of HB, as an example
to show how the ab initio PIMD method can be used to study
such problems in H-bonded systems. As the second example,
we quantitatively analyze the influence of NQEs on the free
energy of some gas phase water clusters using a combination
of ab initio PIMD and TI methods in Section 4. Conclusions
and a short perspective are given in Section 5.

2. Methods
2.1. Ab initio path-integral molecular dynamics

Using the electronic structures and consequently the in-
teratomic interactions calculated “on-the-fly”, the basic idea
of the ab initio PIMD method is to treat the parameter β =

1/(kBT ) associated with a finite temperature T as an imag-
inary time and represent quantum mechanically the density
matrix of the nuclei at this finite T with an artificial polymer,
through
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+V (𝑥1
i−1, . . . ,𝑥

N
i−1))

]}
d𝑥1 d𝑥2, . . . , d𝑥P−1. (1)

Here, kB is the Boltzman constant, and P is the number of
replicas in the artificial polymer, which corresponds to the
number of sampling points along the imaginary time path at
this T . When P = 1, the above equation reaches its classi-
cal limit, which is equivalent to an ab initio MD simulation.
When it goes to infinite, this equation rigorously approaches
its quantum limit. In practice, one needs to choose a finite P,
which must be converged with respect to the physical property
being investigated. m j means the mass of the j-th nucleus, and
ωP equals

√
P/(β h̄). 𝑥i means the spatial configuration of the

nuclei on the i-th image (otherwise called bead) of the arti-
ficial polymer, and 𝑥 j

i is the Cartesian coordinate of the j-th
atom on this image. In association with such a representation,
V (𝑥1

i , . . . ,𝑥
N
i ) means the potential energy of the nuclei in the

i-th image of the polymer.
In Eq. (1), if we take 𝑥0 = 𝑥P (set the path as closed), the

density matrix evolves into its diagonal part, i.e., the quantum
density function. If one further integrates out the configura-
tional space of the nuclei, the partition function of the quantum
system can be obtained

ZQ = lim
P→∞
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If the partition function of the quantum system is known, one
can obtain all its statistical properties. Pictorially, such a map-
ping of the quantum system to the classical polymer can be un-
derstood by a comparison as shown in Fig. 1 for the simplest
molecule H2. The canonical partition function of the quantum
system is what we want to know. From the principles underly-
ing the path-integral representation of the statistical mechan-
ics as given in Ref. [22], one can construct an artificial clas-
sical polymer to simulate the density matrix of the quantum
system through Eq. (1). The density function is the diagonal
part of the density matrix. For the H2 molecule, this poly-
mer is composed of P replicas of the real system (in this case,
H2 molecule). In between the neighboring replicas, the same
atom is connected by a spring interaction, whose spring con-
stant (defined as m jω

2
P in Eq. (1) is determined by m j and ωP.

Within one replica, the interatomic interaction is represented
as V (𝑥1

i , . . . ,𝑥
N
i ). If the PIMD simulation is based on a force

field, this interaction is given by the empirical potentials. If

it is ab initio, this interaction is calculated “on-the-fly” as the
system evolves, as will be discussed later. The spring inter-
action and the intra-replica potential correspond to the kinetic
and the potential energies of the path-integral, respectively. If
the temperature is very high or the mass of the nucleus is very
large, the spring interaction between the neighboring beads of
this atom is very strong, and these beads will be dragged into
a single point in real space. In such cases, for this nucleus,
the quantum description reaches its classical limit. When the
temperature is relatively low and the mass of the nucleus is
small, the PIMD simulations of such a polymer will definitely
present results different from those of the MD simulations (or
the one with P = 1 in Eq. (1). The NQEs will play a role in
describing the properties of the system under investigation.

Fig. 1. Illustration of how the mapping from the canonical quantum
system to a classical polymer is done in the path-integral statistical me-
chanics. The polymer is composed of P replicas of the real molecule.
In each replica, the potential is determined by the potential of the sys-
tem at the specific spatial configuration of this replica. In between the
replicas, the neighboring images (beads) of the same atoms are linked
by springs. The spring constant is determined by m j and ωP as m jω

2
P,

where ωP =
√

P/(β h̄). Therefore, the higher the temperature and the
heavier the nucleus, the stronger the interaction between the beads. In
the limit of T → ∞ and m j → ∞, one arrives at the classical limit when
all images overlap with each other. The partition function of the quan-
tum system as shown on the left equals the configurational partition
function of the polymer on the right as P→ ∞.

2.2. Thermodynamic integration

Using the method described above, by comparing the re-
sults obtained from the ab initio MD and the ab initio PIMD
simulations, the influence of NQEs can be analyzed in a very
clean manner. However, as mentioned, the molecular simu-
lation time needs to be sufficiently long to address the prob-
lem we are interested in. When the timescale one can afford
is not long enough to allow the system to travel between dif-
ferent meta-stable states, direct evaluation of the free-energy
differences between them becomes technically difficult. One
method that is often chosen is to enhance the sampling effi-
ciency either by imposing constraints or modifying the effec-
tive PES.[41–44] But as said, if it is the case that within the
molecular simulation time, the system stays within each meta-
stable state with all spatial configurations close to it explored,
a comparison of the free energies of the meta-stable states
without requiring the system to travel between them provides
an alternative. In this case, one needs a method with which the
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free energy associated with each local minimum can be calcu-
lated. Here, we choose the TI method for such calculations.

The basic idea behind the TI method is that a system with
unknown free energy, which we call the reference system, can
be connected to a system with known free energy, which we
call the real system, by varying one or more parameters. There
are several choices for the reference system and the real sys-
tem, depending on which property we are investigating. In the
present work, we want to investigate the influence of NQEs on
the free energy of the polyatomic system. Therefore, we have
chosen the reference system as the one with classical nuclei,
and the real system as the one with quantum nuclei. For the
real system, the partition function follows Eqs. (2) and (3) and
the free energy of this real system is defined as

FQ =− 1
β

lnZQ. (4)

We note, however, that direct calculation of the free energy
from this equation is impractical. A practical method of choice
is to take a reference system whose effective potential can be
expressed as
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where 𝑥 j
c means the Cartesian coordinate of the centroid of

the j-th nucleus. For a system with effective potential given
by Eq. (5), the free energy rigorously equals that of the poly-
atomic system with classical nuclei (for a detailed derivation,
please refer to pages 191–194 in Ref. [47]). We denote the
free energy of this reference system as FC and assume that it
is already known. Some practical routines for the calculation
of this energy can be found in Refs. [48]–[52].

In between the reference system whose effective poten-
tial is given by Eq. (5) and the real system whose effective
potential is given by Eq. (3), one can introduce a series of in-
termediate systems, whose effective potential equals
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From this definition, it is clear that the intermediate system
reaches the end of the reference (real) one when λ = 0 (λ = 1).
By putting Eq. (6) into the partition function as given in
Eq. (2), one obtains the partition function Z(λ ) of the inter-
mediate system. The free energy of the intermediate system is
defined as

F(λ ) =− 1
β

lnZ(λ ). (7)

We note that F(1) = FQ, which is unknown, and F(0) = FC,
which is known. The difference between them tells us the in-
fluence of the NQEs on the free energy of the polyatomic sys-
tem. Since this F(λ ) is a continuous function of λ , this influ-
ence of the NQEs on the free energy of the polyatomic system
can also be calculated as

∆F = F(1)−F(0) =
∫ 1

0
dλF ′(λ ), (8)

where F ′(λ ) means the derivative of F(λ ) with respect to λ .
By putting the expression of Z(λ ) into Eq. (7) and making
derivation of the free energy to λ , one obtains

F ′(λ )

=

〈
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P
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V (𝑥1
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]〉

V eff(λ )

. (9)

Here, we note that the symbol 〈· · · 〉V eff(λ ) means the ensemble
average of the quantity inside it generated using the effective
potential as given by Eq. (6) of each λ . Thus, the influence
of NQEs on the free energy of the polyatomic system can be
calculated in a very clean manner.

2.3. Computational details

Two separate works will be reviewed in this manuscript,
i.e., (i) the investigation of the influence of NQEs on the
structural change of some H-bonded systems, and (ii) the in-
fluence of NQEs on the free energy of some water clusters.
They were carried out using different codes. But in both
of them, the Perdew–Burke–Ernzerhof (PBE) functional was
used in the description of the electronic exchange–correlation
interactions.[53] In the following, we summarize their other
computational details one after the other.

For investigation of the impact of NQEs on the HB
strength (using the geometric property changes as an indi-
cator), the simulations were carried out using the CASTEP
plane-wave density-functional theory (DFT) code.[54] The ul-
trasoft pesudopotentials were taken along with a 400 eV en-
ergy cutoff for the expansion of the wavefunction. For simula-
tion of the water and HF clusters, a 12 Å cubic cell was used.
For the organic dimers and charged water clusters, an 18 Å
cubic cell was taken. For solid HF and HCl, an eight molecule
supercell along with a 4×2×3 Monkhorst–Pack k-point mesh
was used. For the solid squaric acid, a 20-atom cell along
with a 3× 3× 2 Monkhorst–Pack k-point mesh was chosen.
Time steps of 0.5–0.7 fs were used, and after thermalization,
10000 MD and 6000 PIMD steps were performed. All the
MD and PIMD simulations reported for this part of the work
were performed at a targeting temperature of 100 K, except in
solid HCl (N2H−5 ), where 50 K (300 K) was used to keep the
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system stable (compared with other simulations). The simu-
lations were carried out using the constant-volume, constant-
temperature (NV T ) ensemble, with the Langevin thermostat
employed in controlling the temperatures. In the PIMD sim-
ulations, 16 beads were used to sample the imaginary time
path-integral, along with the staging method to decouple the
movement of the neighboring beads.[55] For more computa-
tional details, please refer to Ref. [7].

For the free-energy change due to NQEs in water clus-
ters, a self-developed combination of the TI and the ab initio
PIMD method within the Vienna ab initio simulation package
(VASP) was used.[56,57] Projector-augmented wave potentials
were employed along with a 600 eV plane wave cutoff energy
for the expansion of the Kohn–Sham orbitals. The Andersen
thermostat was used to control the temperature of the NV T
ensemble.[58] The temperature was set as 100 K, safely with
the stability of the clusters. 48 beads were used to sample the
imaginary time path-integral with a time step of 0.5 fs. After
thermalization, 30000 PIMD steps were used at each λ along
the TI line to obtain the F ′(λ ). For more computational de-
tails, please refer to Ref. [57].

3. Influence of NQEs on the structure of HBs
The first example of the ab initio PIMD simulations, in

which the quantum nature of the nuclei plays an important
role, concerns a fundamental question in physics and chem-
istry, i.e., what is the influence of NQEs on the strength of
HBs? We start by using the structural properties, namely, the
heavy-atom distances, as an indicator. Further investigations
on the energetics will be discussed in Section 4. As mentioned
earlier in this manuscript, it has been known for more than
half a century that, in H-bonded molecular crystals, by replac-
ing H with D, the strength of HBs and consequently the crystal
structural parameters change. This phenomenon is known as
the Ubbelohde effect.[8,9] The conventional Ubbelohde effect
reflects an increase of the heavy-atom distance associated with
the HB upon replacing H by D, which indicates that NQEs
strengthen this intermolecular interaction. We note, however,
that a negative Ubbelohde effect in which a decrease of the
heavy-atom distance happens upon replacing H by D has also
been observed in several materials.[8,9] From the perspective
of molecular simulation, since the 1980s, when PIMD/PIMC
becomes a conventional routine to investigate the NQEs in real
polyatomic systems, a bunch of computer simulations have
been carried out in a wide range of systems. A general conclu-
sion is that the final effect is system-dependent. For example,
in liquid HF, ab initio MD and PIMD simulations have shown
that when NQEs are accounted for, the first peak of the F–
F radial distribution function (RDF) sharpens and shifts to a
shorter F–F distance,[59] indicating that NQEs strengthen the

HB in this system. In contrast, a similar simulation for liq-
uid water shows that the O–O RDF gets less structured when
NQEs are included, indicating that NQEs weaken the HB in
liquid water.[2] We note, however, that although this conclu-
sion is probably right, it is the opposite of what has been re-
ported in Ref. [5].

Besides this discussion concerning HBs in condensed
phases, the impact of NQEs on the strength of HBs has also
been widely discussed in gas-phase clusters.[59–61] For water
clusters up to the hexamer, it was predicted that the NQEs
weaken the HBs, as reflected by the change of the heavy-atom
distances in Refs. [60] and [61]. For HF clusters, however, it
was predicted that NQEs can strengthen or weaken the HBs
depending on the size of the clusters.[59] For clusters smaller
than tetramer, the NQEs weaken this intermolecular interac-
tion, whereas for clusters larger than it, the strengthening of
the HB is observed. In tetramer, the NQEs are negligible. With
these system-dependent conclusions in mind, it is clear that
a simple picture in which the influence of the NQEs on the
strength of HBs and consequently the structural or energetic
properties can be rationalized is highly desired. In Ref. [7],
we have presented a simple picture which can be used to ratio-
nalize these different results. Ab initio PIMD simulations were
used as the basic tool upon which the analysis was carried out.
Here, using these simulations as an example, we will review
this work in a way that how the ab initio MD and PIMD sim-
ulations are used to answer this question can be understood in
a easy manner.

To be as unbiased as possible, a wide range of H-bonded
systems have been chosen, including HF clusters (dimer
to hexamer), H2O clusters (dimer, pentamer, and octamer),
charged, protonated, and hydroxylated water and ammonia
clusters (H9O−5 , H9O+

4 , H7O−4 , and N2H−5 ), organic dimers
(formic acid and formamide), and solids (HF, HCl, and squaric
acid C4H2O4). For each system, both ab initio MD simula-
tions, in which the nuclei are classical particles, and ab initio
PIMD simulations, in which the nuclei are quantum particles,
are carried out. By comparing the difference of the statistical
structures obtained from these two simulations, one can ana-
lyze the influence of NQEs in a very clean manner. The quan-
tities we focus on in characterizing the HBs include: (i) the
heavy-atom distances (denoted by X–X , where X is either O,
Cl, C, N, or F), which describe the intermolecular separations;
(ii) the H-bond angles (X–H· · ·X), which characterize the HB
bending (libration); and (iii) the X–H covalent bond lengths,
which describe the stretching in the H-bond donor molecules.
These quantities provide an indication of H-bond strength, as
will be explained later in the discussion. As the main mea-
sure of H-bond strength, we use a standard estimator based on
the computed red shift (softening) in the X–H stretching fre-
quency of the HB donor molecule. We note that there is no
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perfect measure for the HB strength;[62] however, the red shift
of the stretching frequency is a widely used measure [see, e.g.
Refs. [63] and [64]). In Fig. 2(b), it is shown that this esti-
mator correlates well with the computed binding energy per
HB in the neutral systems we study, which is defined as the
difference between the total energy of the system and the sum
over its unrelaxed components.[62] The larger the red shift of
the stretching frequency (measured as the ratio of the X–H
stretching frequency in the H-bonded cluster to that in the free
monomer), the stronger the HB.

strong H bond weak H bond

HF cluster
water cluster
charged cluster
organic dimer

solid

(a)

∆
(X
↩
X

)/
A

∆
(X
↩
X

)/
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b
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d
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/
H
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V
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Ubbelohde
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Ubbelohde

D
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Fig. 2. (a) The differences between the shortest heavy-atom distances
obtained from the PIMD and MD simulations (X − X)PIMD

average − (X −
X)MD

average, denoted by ∆(X − X), are plotted as a function of the HB
strength index. ∆(X − X) characterizes the impact of the NQEs on
the strength of the HBs. The HB strength is defined as the ratio of
the X–H stretching frequency in the H-bonded system to that in the
free monomer. (b) The correlation between this HB strength index and
the binding energy per HB in the neutral systems. (c) A simplified
schematic illustration of the isotope (Ubbelohde) effect. We suggest
that regimes of positive, negligible, and negative Ubbelohde effects ex-
ist depending on the HB strength. For the HF clusters, labels 1–5 denote
the HBs in the dimer to the hexamer. For the H2O clusters, labels 1, 2,
3a, and 3b refer to the HBs in the dimer, pentamer, and the long and
short HBs in the octamer, respectively. For the charged clusters, labels
1–4 refer to H9O−5 , H9O+

4 , H7O−4 , and N2H−5 . For the organic dimers,
labels 1a, 1b, and 2 mean the red shifted and blue shifted HBs in the
formamide and the red shifted HB in formic acid. For the solids, labels
1–3 refer to the HBs in HCl, HF, and squaric acid. The same labels also
apply to Fig. 4.[7]

With the definition of the above-mentioned quantities in
mind, we first look at the results for the impact of the NQEs
on the strength of HBs. Upon comparing these results for the
various H-bonded systems, an interesting correlation can be
observed between the H-bond strength and the change in in-
termolecular separations, as shown in Fig. 2(a). Here, it can
been seen that as the HB gets stronger, the heavy-atom separa-
tions in the PIMD simulations go from being longer than those
in the MD simulations (positive ∆(X −X)) to being shorter
(negative ∆(X−X)). In other words, the NQEs lead to longer

HBs in weak H-bonded systems and shorter HBs in relatively
strong H-bonded systems. We note that the HB strength in-
creases upon going from small to large clusters and from wa-
ter to HF. This trend is the main finding, and in the following
we explain why it exists and discuss the implications it has for
H-bonded systems in general.

RF-F/A RF-H/A H bond angle/(O)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. HF clusters as examples for detailed analysis of the QNEs. Dis-
tributions of the F–F distances (left), the F–H bond lengths (center),
and the intermolecular bending (F–H· · ·F angle, right) from MD (solid
black lines) and PIMD (dashed red lines) for a selection of systems: the
HF dimer (top), the HF tetramer (middle), and the HF pentamer (bot-
tom). The MD and PIMD averages are shown in black and red vertical
dashes, respectively.[7]

To this end, we take the HF clusters (dimer, tetramer, and
pentamer) as the guiding example, because upon increasing
the cluster size, the HB strength increases, and the influence of
the NQEs switches from a tendency to lengthen to a tendency
to shorten the intermolecular separations (as seen in Ref. [65]).
The results are summarized in Fig. 3, where we plot the dis-
tance and angle distributions from MD and PIMD simulations
for these three clusters separately. The left column shows the
final results, where we can see that, in the dimer, the aver-
aged F–F distance is increased by including the NQEs. In the
tetramer, there is no difference between the averaged quantum
and classical F–F distances. While in the pentamer, the F–F
distance is clearly shortened by including the NQEs. The key
to understanding this variation of the heavy-atom distances is
realizing that there are also related differences between MD
and PIMD in the covalent F–H bond lengths (center) and H-
bond angles (right). Because of anharmonic quantum fluctu-
ations, these two geometric properties also show systematic
changes. The F–H bonds are longer in the quantum (PIMD)
than in the classical (MD) simulations, and this elongation be-
comes more pronounced as the HBs get stronger. Besides this,
the HBs are more bent in the quantum than in the classical sim-
ulations, and this bending generally becomes less pronounced

013104-6



Chin. Phys. B Vol. 25, No. 1 (2016) 013104

as the HBs get stronger. In order to understand the influence of
these variations in structure, analysis of various dimer config-
urations was performed. This analysis reveals that the cova-
lent bond stretching increases the intermolecular interaction,
whereas the HB bending decreases it. Taking the HF dimer
as an example, a 0.04 Å increase in the F–H bond length of
the donor leads to a 40 meV increase in interaction energy
within the dimer; in contrast, a 21◦ reduction in the H-bond
angle leads to a 16 meV decrease in interaction energy. In
short, the F–F distance increases in the dimer as a result of a
large decrease in the HB angle, but only a small increase in the
covalent F-H bond length is noted upon including the NQEs.
Whilst in the tetramer, the F–H stretching is sufficiently pro-
nounced to compensate for the increase in HB bending, leav-
ing the overall F–F distance unchanged; and in the pentamer,
the F–F distance decreases because the F–H covalent bond
stretching dominates over the HB bending.

↼X↩H||↽PIMD/↼X↩H||↽MD

HF
water

C4H2O4

∆
(X
↩
X
)/
A

X↩H||

Fig. 4. Quantification of the competition between the quantum fluctu-
ations on the stretching and bending modes. The differences in aver-
age shortest heavy-atom distances between PIMD and MD simulations
(∆(X−X), vertical axis) are plotted as a function of the ratio of the pro-
jection of the donor X–H covalent bond along the intermolecular axis
from PIMD and MD simulations (horizontal axis). x larger (smaller)
than 1 indicates a dominant contribution from the stretching (bending)
mode when the NQEs are included. Negative values of ∆(X −X) indi-
cate that NQEs decrease the intermolecular separation. An almost linear
correlation between the two variables is observed. The inset illustrates
the geometry used for projecting the donor covalent X–H bond onto the
intermolecular axis. The curved red arrow represents the intermolec-
ular bending and the straight blue arrow represents the intramolecular
stretching.[7]

The above analysis provides a qualitative understanding
of the trend observed. For a more rigorous examination of
this picture and a quantitative description of this competition
for all systems studied, we further calculate the projection (X–
H||) of the donor molecule’s covalent bond along the inter-
molecular axis (see the inset of Fig. 4). Since X–H|| increases
upon intramolecular stretching but decreases upon intermolec-
ular bending, this quantity itself allows the balance between
stretching and bending to be evaluated to a certain extent. The
influence of the NQEs is quantified by the ratio of the PIMD
and MD projections, i.e., x = (X−H||)PIMD/(X−H||)MD.
When this value is clearly greater than one, it indicates that

when the NQEs are included, the main influence is on the
stretching of the covalent bond, and when this value is clearly
smaller than one, it indicates that when the NQEs are included,
the main influence is on the bending of the HB. When one
plots this ratio against the variations in intermolecular separa-
tions, y = ∆(X−X) (which we used to quantify the impact of
the NQEs), a striking (almost linear) correlation is observed
(Fig. 4). For all systems in which HB bending dominates (x
clearly smaller than 1), the heavy-atom distances are longer
in PIMD than in MD (y > 0). In cases where covalent bond
stretching is dominant (x clearly larger than 1), the heavy-atom
distances are shorter in PIMD than in MD (y < 0). With the
increase of x, quantum fluctuations on the stretching mode be-
come more dominant and the NQEs switch from weakening
the hydrogen bonds to strengthening them. Thus, the over-
all influence of the NQEs on the HB interaction quantitatively
comes down to this delicate interplay between covalent bond
stretching and intermolecular bond bending. One notes that
this explanation for the general case is consistent with what
Manolopoulos and coworkers have elegantly shown for liquid
water in Ref. [4].

4. NQEs on the free energy of water clusters
In Section 3, we have analyzed the influence of NQEs

on the strength of HBs, taking the geometric changes as the
indicator. A rigorous quantification of this influence, how-
ever, requires an explicit calculation of the contribution of the
NQEs to the free energy of the H-bonded systems, using the
method shown in Section 2. In Fig. 5, we use two exam-
ples to show how such TI simulations for the calculation of
∆F [nH2O]/n are carried out. The left panel corresponds to
the results of water monomer and the right panel corresponds
to those of the dimer. F ′(λ ) is as defined in Eq. (9), but di-
vided by the number of water molecules in the simulation
cell. Integration of this quantity from 0 to 1 gives us the fi-
nal ∆F [nH2O]/n. The temperature is 100 K. After integration,
∆F [nH2O]/n equals 0.446 eV and 0.462 eV respectively in the
monomer and dimer. To separate out the harmonic and anhar-
monic effects, we can perform a separate phonon frequency
calculation for each system and integrate out the free-energy
change due to NQEs at the harmonic limit through

∆Fharm = kBT
∫

∞

0
g(ω)ln

[
2sinh

(
h̄ω

2kBT

)]
. (10)

This gives us 0.476 eV and 0.491 eV respectively for the
monomer and dimer. The anharmonic effect decreases
∆F [nH2O]/n by ∼ 30 meV in both systems, which is to-
tally physical and non-negligible when more delicate analy-
sis is carried out. Numerical simulations for more systems and
deeper analysis of these results are still ongoing, which we will
present in Ref. [57]. Here, we just use these two examples to
show how these data are generated in practice.
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Fig. 5. Thermodynamic integration based on ab initio PIMD sampling
for the calculation of the free-energy change due to NQEs in the water
monomer and dimer. F ′(λ ) is as defined in Eq. (9), but divided by the
number of water molecules in the simulation cell. Integration of this
quantity from 0 to 1 gives us the final ∆F [nH2O]/n.[57]

5. Conclusion and perspectives
HB is generally weak, but ubiquitous and essential to

life on earth. The small mass of hydrogen means that many
properties of HBs are quantum mechanical in nature, although
quite often their theoretical descriptions remain classical. Due
to the development of computer simulation methods, this in-
fluence of NQEs on the structural and energetic properties of
some hydrogen bonded systems has been systematically stud-
ied in recent years. Here we present a review of these works,
by focussing on the explanation of the main methods behind
the simulations, i.e., the ab initio PIMD method as well as its
extension in combination with the thermodynamic integration
method for the calculation of the free energies. As a practi-
cal example of these studies, ab initio PIMD simulations on
the structural properties of the hydrogen bonded systems have
shown that the NQEs have a tendency to strengthen the strong
HBs and weaken the weak ones, which could be explained by a
competition of the quantum fluctuations on the stretching and
bending modes.
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