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Peking University, Beijing 100871, China
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Recent years, huge progress of first-principles methods has been witnessed in calculating the quasiparticle band gaps,
with many-body perturbation theory in the GW approximation being the standard choice, where G refers to Green’s function
and W denotes the dynamically screened Coulomb interaction. Numerically, the completeness of the basis set has been
extensively discussed, but in practice far from carefully addressed. Beyond the static description of the nuclei, the electron–
phonon interactions (EPIs) are ubiquitous, which cause zero-point renormalization (ZPR) of the band gaps. Therefore, to
obtain high quality band gaps, one needs both accurate quasiparticle energies and accurate treatments of EPIs. In this article,
we review methods on this. The completeness of the basis set is analyzed in the framework of linearized augmented plane
waves, by adding high-energy local orbitals (HLOs). The electron–phonon matrix elements and self-energy are discussed,
followed by the temperature dependence of the band gaps in both perturbative and non-perturbative methods. Applications
of such an analysis on bulk wurtzite BeO and monolayer honeycomb BeO are given. Adding HLOs widens their GW0
band gaps by ∼ 0.4 eV while ZPR narrows them by similar amount. These influences cancel each other, which explains
the fortuitous agreement between experiment and theory when the basis set is incomplete and the EPIs are absent. The
phonon-induced renormalization, a term often neglected in calculations of the band gaps, is also emphasized by its large
magnitude.

Keywords: quasiparticle band gaps, electron–phonon interactions, basis-set completeness, Beryllium oxide

PACS: 71.15.–m, 63.20.kd, 31.15.A– DOI: 10.1088/1674-1056/ac0041

1. Introduction
Electronic band structures are an intrinsic feature of

solids, which determine to a large extent many of their phys-
ical properties. Since the 1980s, developments of first-
principles methods have demonstrated that the GW approxi-
mation within the many-body perturbation theory (MBPT) is
an optimal choice in terms of computational cost, theoretical
complexity, and computational accuracy for descriptions of
the electronic band structures in weakly correlated insulating
materials.[1,2] With no empirical inputs, the shapes of the band
dispersions and the values of the band gaps can always be well
reproduced or predicted.[3] In systems when large discrepan-
cies between theory and experiment exist, such as in ZnO,
Jiang et al. and Nabok et al. have demonstrated that by adding
high-energy local orbitals (HLOs) in the all-electron linearized

augmented plane waves (LAPWs),[4] the band gap can be in-
creased by 0.91 eV to 3.32 eV.[5,6] The final value is close
to the experimental data (∼ 3.4 eV). This indicates that the
completeness of the basis set for expansion of the electronic
wave functions is still an issue requiring attention. When all-
electron methods are chosen, orbitals like HLOs should be
considered to address the high-energy electronic states, and
their influence on the quasiparticle band gaps should be care-
fully tested.[5–7]

When this numerical problem is addressed, one can
obtain accurate quasiparticle band diagrams at the geom-
etry optimized crystal structures. Beyond this, however,
electron–phonon interactions (EPIs) are still absent and
they are ubiquitous in condensed matter.[8] These EPIs
can be reflected by many properties, e.g., the tempera-

*Project supported by the National Key Research and Development Program of China (Grand Nos. 2016YFA0300900 and 2017YFA0205003), the National
Natual Science Foundation of China (Grant Nos. 11934003, 11774003, and 11634001), the Beijing Natural Science Foundation, China (Grant No. Z200004),
and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010400). The computational resources were supported by
the High-performance Computing Platform of Peking University, China.

†Corresponding author. E-mail: willzxw@pku.edu.cn
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§Corresponding author. E-mail: xzli@pku.edu.cn
© 2021 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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ture dependence of the optical spectra,[9,10] the tempera-
ture dependence of the quasiparticle band gaps,[11,12] the
phonon-limited carrier mobility in semiconductors,[13] the
phonon-mediated superconductors,[14,15] and the electron
mass renormalization.[16] They are realistic and fundamental
in condensed matter physics. To address these EPIs, early
theoretical studies often resort to the semi-empirical model
Hamiltonian. In the late 1980s and mid 1990s, the advent
and developments of density-functional perturbation theory
(DFPT) mean that it is possible to study these problems within
the first-principles framework.[17–19] Based on this, recently
years researchers have witnessed huge progress in the develop-
ment of theoretical methods on first-principles simulations of
the EPIs.[8–11,20–33] However, comparatively speaking, when
discrepancies between calculations and experiments exist, the
electronic structures methods at geometry optimized structures
in further development are often resorted to other than EPIs in
standard numerical calculations. Phonon-induced renormal-
izations of these physical properties are still absent in this
paradigm. In many of the existing first-principles calculations
of the EPIs, the pseudopotentials (PPs) are chosen due to their
low computational cost. These PPs based calculations can suf-
fer from the basis set completeness problem in descriptions
of the quasiparticle energies, when special channels are not
designed for the high-energy orbitals.[34,35] Besides this, er-
rors due to the pseudoization of the wave functions are also
non-negligible.[36,37] These errors decrease when hard PPs
with specially designed channels for the high-energy states
are chosen.[38] Unfortunately, in most practical calculations,
they sum up to non-negligible errors, leading to the fact that
benchmark results should still be provided by the all-electron
methods with complete basis set. Therefore, to clearly deci-
pher the contributions from each term of interactions to the ex-
perimental observed quasiparticle band gaps and optical band
gaps, one needs to get the quasiparticle energy with a com-
plete basis set in the all-electron framework. Upon this, the
EPIs should be included. Compared to the theoretical results
for quasiparticle and optical band gaps obtained with these is-
sues not fully taken care, comparisons between these theoreti-
cal results with experiments allow much better understanding
of the experimental observations. Taking hexagonal boron ni-
tride (h-BN) as an example,[7] it is an indirect band gap insula-
tor. The quasiparticle energy corrections to the direct/indirect
band gaps increased by including HLOs in the GW0 calculation
are 0.22/0.23 eV. This is far from being negligible. ZPR cor-
rections, on the other hand, decrease them by similar amount
(∼ 0.2 eV). Therefore, when the basis set is incomplete and
the EPIs are neglected, the final absorption spectrum agrees
well with experiment.[39] This fortuitous agreement, however,
should not be encouraged. Advances in first-principles meth-
ods require that one can control the numerical error in each
step of the theory and accurately decipher the contribution
from each interaction term to the experimental observations.

In this article, we review the state-of-the-art theoretical meth-
ods on calculation of the band gaps, focusing on understand-
ing the influence of completeness of the basis set and the EPIs.
The article is organized as follows: In Section 2, we present
a short overview on the implementation of the GW approach
in the LAPW basis, and analyze the influence of the basis set
by adding HLOs. In Section 3, the EPIs are briefly summa-
rized based on MBPT. The electron–phonon matrix elements
and self-energy are then introduced, followed by formulas of
temperature-dependent band renormalization in both perturba-
tive and non-perturbative methods. In Section 4, applications
on bulk wurtzite BeO (w-BeO) and monolayer honeycomb
BeO (h-BeO) are given. For w-BeO, including HLOs in GW
calculations widens the band gap by ∼ 0.4 eV while ZPR nar-
rows it by similar amount. For h-BeO, the ZPR to the indirect
fundamental band gap is −0.37 eV, larger than most typical
semiconductors. The conclusions and perspectives are given
in Section 5. We use atomic units throughout this article.

2. Quasiparticle energies by including HLOs in
the LAPW-based GW approximation

2.1. The G0W0 approximation

The central task of the GW method is to obtain the quasi-
particle (QP) energies εQP by solving the QP equation with
a non-local self-energy operator. In the G0W0 approximation,
the non-local self-energy is defined as (in atomic units)

Σ
(
𝑟,𝑟′;ω

)
=

i
2π

∫
G0
(
𝑟,𝑟′;ω +ω

′)
×W0

(
𝑟,𝑟′;ω

′) e iω ′η dω
′. (1)

In Eq. (1), G0 is the non-interacting single-particle Green func-
tion

G0
(
𝑟,𝑟′;ω

)
= ∑

i

ψi(𝑟)ψ
*
i (𝑟

′)

ω − εi +µ + iδ sgn(ω)
, (2)

where ψi(𝑟) is the wave function with energy εi, the chemical
potential µ , positive infinitesimals η and δ , and the sign func-
tion “sgn”. W0 is the dynamically screened Coulomb potential,

W0
(
𝑟,𝑟′;ω

)
=
∫

ε
−1 (𝑟,𝑟1;ω)v

(
𝑟1,𝑟

′) d𝑟1. (3)

with ε (𝑟,𝑟1;ω) being the microscopic dielectric function and
v(𝑟1,𝑟

′) = 1/|𝑟1 − 𝑟′| the bare Coulomb potential. The
single-particle states are usually obtained in the Kohn–Sham
(KS) framework of density functional theory (DFT) by solv-
ing the KS equation

hKS(𝑟)ψKS
i (𝑟) = ε

KS
i ψ

KS
i (𝑟), (4)

where the KS single-particle Hamiltonian reads

hKS(𝑟) = −1
2

∇
2
𝑟 + vH(𝑟)+ vion-e(𝑟)+ vxc(𝑟), (5)

vH(𝑟) =
∫

d𝑟′
n(𝑟′)
|𝑟−𝑟′|

, (6)
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vxc(𝑟) =
δExc

δn(𝑟)
, (7)

with vH, vion-e, vxc being the Hartree, ionic, exchange-
correlation potentials, respectively, and Exc[n] the KS
exchange-correlation functional of electron density

n(𝑟) = ∑
i∈occ.

|ψi(𝑟)|2 . (8)

Once Σ is at hand, QP energy of state |ψi⟩ εQP can be
readily solved by applying the first-order approximation, i.e.,

ε
QP
i = εi +Zi⟨ψi|ReΣ (εi)− v̂xc|ψi⟩. (9)

Here Zi is the QP renormalization factor. Furthermore, one
can perform the so-called energy-only GW0 calculation, where
ε

QP
i are updated according to the Dyson equation until the cor-

responding Green function is converged, while the screened
Coulomb interaction and wave functions are kept the same as
in G0W0.[40,41]

2.2. LAPW basis including HLOs

Now we briefly introduce the basis functions used in the
LAPW framework. The LAPW functions can be written as

φ
LAPW
𝑘+𝐺 (𝑟) =


1√
V

e i(𝑘+𝐺)·𝑟, 𝑟 ∈ 𝐼,

∑
lm
[A𝑘+𝐺

αlm uαl(rα ;Eαl)+B𝑘+𝐺
αlm u̇αl(rα ;Eαl)]Ylm(�̂�

α), 𝑟 ∈V α ,
(10)

with 𝑘 and 𝐺 being the wave vector inside the first Brillouin
zone (BZ) and the reciprocal lattice vector, respectively. V
represents the volume of the crystal, V α is the region enclosed
by the muffin-tin (MT) sphere with radius Rα

MT and centered
on the α-th atom at 𝑟α , 𝑟α ≡ 𝑟−𝑟α , and 𝐼 is the interstitial
region, i.e., positions inside the unit cell that does not belong
to any V α . uαl(rα ;Eαl) is the solution of the radial KS equa-
tion at reference energy Eαl , u̇αl(Eαl)≡ ∂uαl(E)/∂E|Eαl

. Ylm

is the spherical harmonics function. The augmentation coeffi-
cients A𝑘+𝐺

αlm and B𝑘+𝐺
αlm are determined by forcing φ LAPW

𝑘+𝐺 (𝑟)

smooth at the boundary of V α . The distinct forms inside
and outside the atomic spheres of LAPW makes the funca-
tions suitable for all-electron calculations of solid states. The

scheme called APW+lo is proposed to improve the LAPW ba-
sis in low l channels by removing the u̇l part and including an
additional local orbital (lo) inside V α ,

φ
lo
αlm(𝑟) = [Alo

αlmuαl(rα ;Eαl)

+Blo
αlmu̇αl(rα ;Eαl)]Ylm(�̂�

α), (11)

where coefficients Alo
αlm and Blo

αlm are decided by the normal-
ization condition and enforcing φ lo

αlm(R
α
MT) = 0. Properties

such as total energy converge faster with respect to the plane-
wave cut-off under APW+lo than the LAPW basis.[42,43]

Another important type of basis in the LAPW frame-
work is the local orbitals (LOs) featuring an extra reference
energy,[5,42,44]

φ
LO,i
lm (𝑟) =

{
[ALO,i

αlm uαl(rα ;Eαl)+BLO,i
αlm u̇αl(rα ;Eαl)+CLO,i

αlm uαl(rα ;ELO,i
αl )]Ylm(�̂�

α), 𝑟 ∈V α ,

0, 𝑟 ∈ 𝐼,
(12)

where ELO,i
αl is the extra reference energy for the i-th set of

LO in the l channel of the α-th atom. When APW+lo ba-
sis is used in the same l channel, coefficient BLO

αlm is forced
to be zero, and ALO,i

αlm and CLO,i
αlm are chosen such that φ

LO,i
lm

is normalized and vanishes at the MT sphere boundary. LO
was originally introduced to improve the description for semi-
core states[37,45] and empty states several Rydbergs above the
Fermi level.[46] Recently, the LOs with extremely large energy
parameters, termed as high-energy LOs (HLOs), are found to
be crucial to eliminate the linearization energy in high-lying
empty states in the standard LAPW basis and obtain accurate
quasi-particle band gaps for systems like ZnO, d/f-electron
mono-oxide, cuprous/silver halides and h-BN.[5–7,47–50] In the
current all-electron GW implementation, the size of HLOs is
controlled by two parameters, namely, the additional number

of nodes of the highest HLO with respect to the LAPW radial
function in the same l channel and the maximal angular quan-
tum number of HLOs, denoted by nLO and lLO

max, respectively.
In general, the larger the nLO and lLO

max are, the higher the HLOs
can reach in the energy space.

3. Electron–phonon interactions

3.1. Electron–phonon perturbation theory

In the following, before considering electron–phonon in-
teractions, we give the Hamiltonian of the electron subsystem
and the ionic subsystem. After that, we derive the formulations
of electron–phonon self-energy using many-body perturbation
theory.
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3.1.1. Electron–phonon matrix elements

The electron subsystem is effectively treated as a non-
interacting system based on the KS ansatz, i.e., Eq. (4). After
solving the KS equation, we can rewrite the KS Hamiltonian
at a certain ionic configuration 𝑅 in the second quantization
form

ĤKS = ∑
i

ĥKS(𝑟i;𝑅) = ∑
n𝑘

(εn𝑘−µ) â†
n𝑘ân𝑘, (13)

where εn𝑘 is the eigenvalue corresponding to the n-th band and
crystal momentum 𝑘 and â†

n𝑘 (ân𝑘) is the electronic creation
(annihilation) operator. Particularly, at the equilibrium geom-
etry,

ĤKS
0 = ∑n𝑘

(
ε0

n𝑘−µ
)

â†
n𝑘ân𝑘. (14)

For the ionic subsystem, after solving the KS equation we can
obtain the Hamiltonian as follows:

Ĥion =−∑
Iκ

1
2Mκ

∇
2
Iκ +

1
2 ∑

IJκκ ′

Zκ Zκ ′

|𝑅Jκ ′ −𝑅Iκ |
+Ee(𝑅), (15)

where 𝑅Iκ represents the spatial coordinate of the κ-th ion
with mass Mκ and charge Zκ in the I-th unit cell, and ∇Iκ ≡
∂/∂𝑅Iκ . Ee(𝑅) is the electronic ground state energy with a
set of atomic configuration denoted by 𝑅. In KS-DFT, Ee(𝑅)

can be obtained by the energy functional

Ee[n] = ∑
i∈occ.

⟨ψi|−
1
2

∇
2|ψi⟩+

∫
d𝑟vH(𝑟)n(𝑟)+Exc[n]

+
∫

d𝑟vion-e(𝑟)n(𝑟), (16)

with vH and n defined in Eqs. (6) and (8), respectively, and

vion-e(𝑟) =−∑
Iκ

Zκ

|𝑟−𝑅Iκ |
. (17)

The sum of the last two terms in Eq. (15) defines the Born–
Oppenheimer potential energy surface (BO-PES) and is de-
noted as UBO(𝑅). According to the harmonic approximation
(HA), UBO(𝑅) can be expanded to the second order about the
equilibrium geometry {𝑅0}, and the nuclear Hamiltonian can
be rewritten as

ĤHA
ion = −∑

Iκ

1
2Mκ

∇
2
Iκ

+
1
2 ∑

Iκα

∑
Jκ ′β

∂ 2UBO

∂RIκα ∂RJκ ′β

∣∣∣∣
𝑅0

uIκα uJκ ′β , (18)

where uIκ = RIκα −R0
Iκα

represents its displacement from the
equilibrium position in Cartesian coordinate α . The static
ground state energy UBO(𝑅0) is omitted and the first-order
term equals zero. Using the canonical transformation,[51]

Eq. (18) changes into its second quantized formalism

ĤHA
ion = ∑

𝑞ν

(
b̂†
𝑞ν b̂𝑞ν +

1
2

)
ω𝑞ν . (19)

Here b̂†
𝑞ν (b̂𝑞ν) is the phonon creation (annihilation) operator;

ω𝑞ν is the ν-th branch phonon frequency with crystal momen-
tum 𝑞. Using the phonon creation and annihilation operator,
the ionic displacement is quantized as follows:[51]

uIκα = ∑
𝑞ν

(
1

2NMκ ω𝑞ν

) 1
2

e i𝑞·𝑅I ξκα(𝑞ν)(b̂𝑞ν + b̂†
−𝑞ν), (20)

where 𝑅I is the position vector of the Ith unit cell, ξκα(𝑞ν)

is the eigenvector. N represents the number of unit cells in
Born–von Kármán (BvK) supercell, which is the same as the
number of Bloch wave vectors in BZ. To go beyond the KS
band structure with static nuclei, one can consider the atomic
vibration by expanding ĤKS to the second order in the atomic
displacement

ĤKS = ĤKS
0 + Ĥ1 + Ĥ2 = ĤKS

0 +∑
i

ĥ(1)i +∑
i

ĥ(2)i . (21)

The first order and the second order terms in it are given by

ĥ(1) = ∑
Iκα

uIκα

∂vKS

∂RIκα

∣∣∣∣∣
𝑅=𝑅0

, (22)

ĥ(2) = ∑
Iκα,Jκ ′β

uIκα uJκ ′β
∂ 2vKS

∂RIκα ∂RJκ ′β

∣∣∣∣
𝑅=𝑅0

. (23)

By using Eq. (20), Eq. (22) can be rewritten in the second
quantized formalism as follows:

ĥ(1) = ∑
Iκα

∑
𝑞ν

(
1

2NMκ ω𝑞ν

) 1
2

e i𝑞·𝑅I ξκα(𝑞ν)

×
(

b̂𝑞ν + b̂†
−𝑞ν

)
∂vKS

∂RIκα

∣∣∣∣
𝑅=𝑅0

. (24)

In this case, the second quantized formalism of Ĥ1 can be ob-
tained as

Ĥ1 = ∑
nm𝑘𝑘′

〈
n𝑘
∣∣∣ĥ(1)∣∣∣m𝑘′

〉
â†

n𝑘âm𝑘′

= ∑
nm𝑘𝑘′

∑
Iκα

∑
𝑞ν

(
1

2NMκ ω𝑞ν

) 1
2

e i𝑞·𝑅I ξκα(𝑞ν)

×⟨n𝑘 | ∂vKS

∂RIκα

∣∣∣∣
𝑅=𝑅0

| m𝑘′⟩

×
(

b̂𝑞ν + b̂†
−𝑞ν

)
â†

n𝑘âm𝑘′ , (25)

where |n𝑘⟩=N−1/2 e i𝑘·𝑟un𝑘(𝑟) is the Bloch state, and un𝑘(𝑟)

is the periodic part. Given that

∑
I

e i𝑞·𝑅I
∂vKS

∂RIκα

∣∣∣∣
𝑅=𝑅0

= ∑
I

e i𝑞·𝑅I
∂vKS (𝑟−𝑅I)

∂R0
κα

∣∣∣∣
𝑅=𝑅0

(26)
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has the lattice periodicity, the matrix in Eq. (25) can reduce to

⟨n𝑘 | ∑
Iκα

e i𝑞·𝑅I
∂vKS (𝑟−𝑅I)

∂R0
κα

∣∣∣∣∣
𝑅=𝑅0

| m𝑘′⟩

=
1
N

∫
d3𝑟 e−i(𝑘−𝑘′)·𝑟

× ∑
Iκα

e i𝑞·𝑅I
∂vKS (𝑟−𝑅I)

∂R0
κα

∣∣∣∣∣
𝑅=𝑅0

u*n𝑘(𝑟)um𝑘′(𝑟)

=
1
N ∑

I
e−i(𝑘−𝑘′−𝑞)·𝑅I

∫
d3𝑟 e−i(𝑘−𝑘′)·(𝑟−𝑅I)

× ∑
κα

∂vKS (𝑟−𝑅I)

∂R0
κα

∣∣∣∣
𝑅=𝑅0

u*n𝑘(𝑟)um𝑘′(𝑟)

= δ𝑘=𝑘′+𝑞

∫
d3𝑟 e−i(𝑘−𝑘′)·𝑟

× ∑
κα

∂vKS(𝑟)

∂R0
κα

∣∣∣∣
𝑅=𝑅0

un𝑘
*(𝑟)um𝑘′(𝑟)

= N⟨n𝑘 | ∑
κ,α

∂vKS

∂R0
κα

∣∣∣∣∣
𝑅=𝑅0

| m𝑘′⟩δ𝑘=𝑘′+𝑞. (27)

Therefore, Eq. (25) can be rewritten as

Ĥ1 = N−1/2
∑
nm𝑘

∑
𝑞ν

gnmν(𝑘,𝑞)â
†
n𝑘âm𝑘−𝑞

(
b̂𝑞ν + b̂†

−𝑞ν

)
. (28)

Here, we define the electron–phonon matrix element

gnmν(𝑘,𝑞) = N ∑
κα

(
1

2Mκ ω𝑞ν

) 1
2

ξκα(𝑞ν)

×⟨n𝑘 | ∂vKS

∂R0
κα

∣∣∣∣
𝑅=𝑅0

| m𝑘−𝑞⟩. (29)

Using the Bloch periodicity, Eq. (29) can be transformed to[8]

gnmν(𝑘,𝑞) =
〈
un𝑘
∣∣∇𝑞ν vKS∣∣um𝑘−𝑞

〉
unit , (30)

where

∇𝑞ν vKS = ∑
Iκ

(
1

2Mκ ω𝑞ν

) 1
2

ξκ(𝑞ν)e−i𝑞·(𝑟−𝑅I) ·∇𝑅0
κ
vKS,

the subscript “unit” represents the integral within a unit cell.
Similarly, making use of the Bloch periodicity, one can

obtain the second quantized formalism of the second order
Hamiltonian as follows:

Ĥ2 =
1
N ∑

nm𝑘
∑

𝑞𝑞′νν ′
g(2)nmνν ′

(
𝑘,𝑞,𝑞′

)
â†

n𝑘âm𝑘−𝑞−𝑞′

×
(

b̂𝑞ν + b̂†
−𝑞ν

)(
b̂𝑞′ν ′ + b̂†

−𝑞′ν ′

)
, (31)

with the second-order electron–phonon matrix element

g(2)nmνν ′
(
𝑘,𝑞,𝑞′

)
=

1
2
〈
un𝑘
∣∣∇𝑞ν ∇𝑞′ν ′vKS∣∣um𝑘−𝑞−𝑞′

〉
unit . (32)

At this stage, we can write the total Hamiltonian of the
system as

Ĥ = Ĥ0 + Ĥ1 + Ĥ2, (33)

where

Ĥ0 = ĤKS
0 + ĤHA

ion , (34)

and Ĥ1 + Ĥ2 can be treated as the perturbative term.

3.2. Electron–phonon self-energy

Based on the Hamiltonian shown in Eq. (33), we use the
many-body perturbation theory (MBPT) to obtain the electron
Green function and the electron self-energy Σ . Due to the fact
that the EPIs are considered mostly at finite temperatures, the
Matsubara Green function is resorted to[52]

𝒢n𝑘(τ) = −
Tr
[

e−β ĤTτ ân𝑘(τ)â
†
n𝑘(0)

]
Tre−β Ĥ

= −⟨Tτ ân𝑘(τ)â
†
n𝑘(0)⟩. (35)

The symbol “Tr” means the trace, whose summation needs
to go over the complete set of eigenstates of Ĥ. The fac-
tor β = 1/kBT . Tτ is the τ-ordering operator. In the Mat-
subara method, time is treated as a complex temperature;
τ = it ∈ [−β ,β ] is the imaginary time. The creation (anni-
hilation) operator â†

n𝑘(τ) (ân𝑘(τ)) is defined as

â†
n𝑘(τ) = eτĤ â†

n𝑘 e−τĤ , ân𝑘(τ) = eτĤ ân𝑘 e−τĤ . (36)

Next we introduce the S matrix, defined as

S (τ1,τ2) = Tτ e−
∫ τ2

τ1 dτ
̂̃H ′
(τ), (37)

where ̂̃H ′
(τ) = eτĤ0Ĥ ′ e−τĤ0 , and Ĥ ′ = Ĥ1+ Ĥ2. The electron

Green function can be rewritten as

𝒢n𝑘(τ) =−
Tr0

[
e−β Ĥ0Tτ S(β ,0)̂̃an𝑘(τ)̂̃a†

n𝑘(0)
]

Tr0

[
e−β Ĥ0S(β ,0)

] , (38)

with

̂̃a†
n𝑘(τ) = eτĤ0̂̃a†

n𝑘 e−τĤ0 , ̂̃an𝑘(τ) = eτĤ0̂̃an𝑘 e−τĤ0 . (39)

Compared to Eq. (35), Eq. (38) seeks the trace over a complete
set of states of Ĥ0, denoted as Tr0, which is easier to solve.

By expanding the S matrix, the numerator of Eq. (38) can
be expressed as

Tr0

[
e−β Ĥ0Tτ S(β ,0)̂̃an𝑘(τ)̂̃a†

n𝑘(0)
]

= −
∞

∑
n=0

(−1)n
∫

β

0
dτ1

∫
β

0
dτ2 · · ·

∫
β

0
dτn

×Tr0

[
e−β Ĥ0Tτ

̂̃H ′
(τ1) · · · ̂̃H ′

(τn)̂̃an𝑘(τ)̂̃a†
n𝑘(0)

]
connect

.

(40)

Here, the subscript “connect” means that the diagrams of S-
matrix expansion should only include the distinct connected
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Feynman diagrams, owing to the fact that the disconnected di-
agrams have just been canceled by the denominator.

Inserting Eq. (39) into Eq. (40) and applying Wick’s the-
orem, one can obtain the electron Green function. Specifi-
cally, the first-order expansion of the first-order perturbative
Hamiltonian yields two electron propagators, one phonon cre-
ation operator or one phonon annihilation operator. This term
is equal to zero. The second-order expansion of the first-order
perturbative Hamiltonian yields three electron propagators and
two phonon propagators. This term is nonzero, and the Feyn-
man diagram in frequency-momentum space can be shown in
Fig. 1.

q↪iΩl

k↪iωj k-q↪iωj-iΩl k↪iωj

Fig. 1. Diagrammatic representation of the second-order electron Green
function corresponding to the first-order perturbative Hamiltonian Ĥ1. The
solid lines represent the non-interacting electron Green function, denoted
as 𝒢(0). The wavy line represents the non-interacting phonon Green func-
tion, denoted as 𝒟(0); ω j = (2 j + 1)π/β is the frequency for fermions,
Ωl = 2lπ/β is the frequency for bosons, where j and l are integers. The
symbol “∙” represents the electron–phonon matrix element g.

The electron–phonon self-energy can be obtained by re-
moving the two-sided lines

Σ
FM
n𝑘 (iω j) = − 1

βN ∑
l

∑
m𝑞ν

|gnmν(𝑘,𝑞)|2

×𝒟0
𝑞ν (iΩl)𝒢

(0)
m𝑘−𝑞 (iω j − iΩl) . (41)

𝒟0
𝑞ν is the non-interacting phonon Green function, defined as

𝒟0
𝑞ν (iΩl) =− 2Ωl

Ω 2
l +ω2

𝑞ν

. (42)

𝒢0
m𝑘 is the non-interacting electron Green function, defined as

𝒢0
m𝑘 (iω j) =

1
iω j − εm𝑘+µ

. (43)

The superscript “FM” represents Fan–Migdal, due to the fol-
lowing reasons:

For the semiconductors and insulators, within some ap-
proximations, this term is referred to the Fan self-energy de-
duced by the second-order time-dependent perturbation theory
by Fan in 1951.[53]

For the metals, this term is referred to the lowest-order
electron–phonon self-energy by Migdal in 1958.[54]

The first-order expansion of the second-order perturbative
Hamiltonian yields two electron propagators and two phonon
propagators. This term is nonzero and the Feynman diagram
in frequency-momentum space is shown in Fig. 2.

q↪iΩl

k↪iωj k↪iωj

Fig. 2. Diagrammatic representation of the first-order electron Green
function corresponding to the second-order perturbative Hamiltonian
Ĥ2. The symbol “⊗” represents the second-order electron–phonon ma-
trix element g(2).

The electron–phonon self-energy can be obtained by re-
moving the two-sided lines

Σ
DW
n𝑘 =− 1

βN ∑
l

∑
𝑞ν

g(2)nnνν(𝑘,𝑞,−𝑞)𝒟0
𝑞ν (iΩl) . (44)

The superscript “DW” represents Debye–Waller, due to the
fact that Antončı́k used the pseudopotential modified by the
Debye–Waller factor to calculate the temperature-dependent
band gaps.[55]

Using the frequency summations,[52] we obtain

− 1
β

∑
l
𝒟0

𝑞ν (iΩl)𝒢0
m𝑘−𝑞 (iω j − iΩl)

=

[
N𝑞ν + f (εm𝑘−𝑞 −µ)

iω j − εm𝑘−𝑞 +µ +ω𝑞ν

+
N𝑞ν +1− f (εm𝑘−𝑞 −µ)

iω j − εm𝑘−𝑞 +µ −ω𝑞ν

]
,

(45)

with

N𝑞ν =−1
2
+

1
β

∑
l

1
iΩl −ω𝑞ν

. (46)

The FM self-energy and DW self-energy are rewritten as

Σ
FM
n𝑘 (iω j) =

1
N ∑

m𝑞ν

|gnmν(𝑘,𝑞)|2

×
[

N𝑞ν + f (εm𝑘−𝑞 −µ)

iω j − εm𝑘−𝑞 +µ +ω𝑞ν

+
N𝑞ν +1− f (𝜀m𝑘−𝑞 −µ)

iω j − εm𝑘−𝑞 +µ −ω𝑞ν

]
, (47)

Σ
DW
n𝑘 =

1
N ∑

𝑞ν

g(2)nnνν(𝑘,𝑞,−𝑞)(2N𝑞ν +1) , (48)

where N𝑞ν and f (εm𝑘−𝑞 −µ) are the occupied number of
bosons and fermions. Due to the computational complexity of
the second-order derivative of the effective potential, one can
use the translational invariance and the rigid ion approxima-
tion to rewrite the second-order electron–phonon matrix ele-
ment as the product of two first-order electron–phonon matrix
elements, denoted as g̃(2)mnν(𝑘,𝑞), which is a real number.[24]

The DW self-energy can be rewritten as

Σ
DW
n𝑘 =

1
N

′

∑
m𝑞ν

g̃(2)mnν(𝑘,𝑞)

εn𝑘− εm𝑘
(2N𝑞ν +1) . (49)
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The prime requires m ̸= n. Till now, we have just consid-
ered the lowest-order Green function corresponding to Ĥ1 and
Ĥ2. The expansion of Eq. (40), however, is to infinite order.
In order to consider the corrections of higher-order terms to
the electron Green function, we can combine these two self-
energy diagrams and obtain the Dyson equation. The structure
is schematically shown in Fig. 3, and the corresponding equa-
tion is as follows:

𝒢n𝑘 (iω j) =
1

iω j − εn𝑘+µ −Σ FM
n𝑘 (iω j)−Σ DW

n𝑘
. (50)

Σ

Fig. 3. Diagrammatic representation of the Dyson equation. The double
line represents the dressed Green function, and the single line represents
the non-interacting Green function.

Experimental measurements of excitation energies are
for real frequencies. Therefore, one needs to perform ana-
lytic continuation of Eq. (50) to the complex plane, and to
frequencies close to the real axis. By transforming iω →
ω + iδ sgn(ω), Eq. (50) is replaced by

𝒢n𝑘(ω) =
1

ω − εn𝑘+µ + iδ sgn(ω)−Σ FM
n𝑘 (ω)−Σ DW

n𝑘
, (51)

and the FM self-energy can be rewritten as

Σ
FM
n𝑘 (ω) =

1
N ∑

m𝑞ν

|gnmν(𝑘,𝑞)|2

×
[

N𝑞ν + f (εm𝑘−𝑞 −µ)

ω − εm𝑘−𝑞 +µ + iδ sgn(ω)+ω𝑞ν

+
N𝑞ν +1− f (εm𝑘−𝑞 −µ)

ω − εm𝑘−𝑞 +µ + iδ sgn(ω)−ω𝑞ν

]
. (52)

The spectral function is obtained from the imaginary part of
Eq. (51), which is directly comparable to the experimental
measurements

An𝑘(ω) =− 1
π

Im𝒢n𝑘(ω). (53)

Assuming that 𝒢n𝑘 has a pole at En𝑘+ iΓn𝑘− µ , we can
obtain the real part of the quasiparticle energy as follows:

En𝑘 = εn𝑘+ReΣ
FM
n𝑘 (En𝑘+ iΓn𝑘−µ)+Σ

DW
n𝑘 , (54)

and the imaginary part of the quasiparticle energy as

Γn𝑘 = ImΣ
FM
n𝑘 (En𝑘+ iΓn𝑘−µ) . (55)

It is worth noting that due to the frequency dependence of
FM self-energy, Eqs. (54) and (55) must be solved self-
consistently. In the quasiparticle approximation, the Taylor
expansion can be used to avoid self-consistent calculation,

En𝑘 ≈ εn𝑘+ReΣ
FM
n𝑘 (εn𝑘−µ)+Σ

DW
n𝑘

+
∂ReΣ FM

n𝑘 (ω)

∂ω

∣∣∣∣
ω=εn𝑘−µ

(En𝑘− εn𝑘) . (56)

By defining the renormalization factor

Zn𝑘 =
1

1− ∂ReΣ FM
n𝑘 (ω)

∂ω

∣∣∣∣
ω=εn𝑘−µ

, (57)

one gets

En𝑘 ≈ εn𝑘+Zn𝑘
[
ReΣ

FM
n𝑘 (εn𝑘−µ)+Σ

DW
n𝑘
]
, (58)

Γn𝑘 ≈ ImΣ
FM
n𝑘 (εn𝑘−µ) . (59)

The DW self-energy only shifts the quasiparticle energy,
while FM self-energy has a contribution to both the quasipar-
ticle energy and the quasiparticle lifetime. When the renor-
malization factor Z = 1, it represents the static limit of the
quasiparticle approximation, called on-the-mass-shell (OMS)
approximation in literature.[27] In the OMS approximation,
the FM self-energy is equivalent to the correction to the
semiconductor electronic bands by the first-order perturbative
Hamiltonian within the second-order time-dependent pertur-
bation theory. Apart from the OMS approximation, allowing
εn𝑘 − εm𝑘−q ±ω𝑞v ≈ εn𝑘 − εm𝑘−𝑞 , we can obtain the Allen–
Heine–Cardona (AHC) theory,[56,57]

En𝑘 = εn𝑘+
1
N

[
∑

m𝑞ν

|gnmν(𝑘,𝑞)|2

εn𝑘− εm𝑘−𝑞

− 1
2

′

∑
m𝑞ν

g̃(2)mnν(𝑘,𝑞)

εn𝑘− εm𝑘

]
(2N𝑞ν +1) . (60)

In the history of studies of the semiconductors, researchers
used to believe that the FM self-energy is equivalent to the
DW term, leading to a misunderstanding to just consider-
ing one of them. In 1976, Allen et al. clarified that these
two self-energies are inequivalent and of the same order of
magnitude.[56]

In the practical first-principle EPIs calculations, the key is
to determine the electron–phonon matrix elements. The most
popular method is DFPT.[58] The main idea is that the pertur-
bative potential induced by nuclei vibrations leads to the vari-
ation of ground-state charge density, which can be obtained by
the variation of ground-state electron wave functions. There-
fore, one can obtain the variation of the charge density and
the effective potential by solving the Sternheimer equation of
the Schrödinger equation in a self-consistent manner. This
method is suitable for the crystal systems with small prim-
itive unit cells, and the electron–phonon matrix elements of
any point in the BZ can be obtained. Due to the requirement
for dense BZ sampling in EPIs calculations, researchers also
developed some interpolation methods, such as Wannier in-
terpolation, which is successfully employed in a number of
applications ranging from metal and superconductors to semi-
conductors and nanoscale systems.[8,22,59]
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3.3. Nonperturbative methods

For the system with no periodicity or with large prim-
itive unit cells, the numerical convergence of the electron–
phonon matrix elements calculation based on DFPT is chal-
lenging. One needs to resort to alternative approaches. To
make the review complete, we introduce two methods based
on the nonperturbative approach in the following discussions,
i.e., the “finite displacement” method and the “ensemble aver-
age” method.

3.3.1. Finite displacement

Performing the Taylor expansion of the atomic dis-
placements to the second order within the harmonic
approximation,[20] one can reach

En𝑘 = εn𝑘+ ∑
Iκα

uIκα

∂εn𝑘

∂RIκα

∣∣∣∣∣
𝑅=𝑅0

+ ∑
Iκα,Jκ ′β

uIκα uJκ ′β
∂ 2εn𝑘

∂RIκα ∂RJκ ′β

∣∣∣∣∣
𝑅=𝑅0

. (61)

After the thermal average, the first-order term is zero, and
the second-order term is retained. By inserting Eq. (20) into
Eq. (61), one can obtain[57]

En𝑘 = εn𝑘+∑
𝑞ν

∂εn𝑘

∂N𝑞ν

(
N𝑞ν +

1
2

)
, (62)

with

∂εn𝑘

∂N𝑞ν

≡ 1
2Nω𝑞ν

∑
Iκα,Jκ ′β

1√
Mκ Mκ ′

e i𝑞·(𝑅I−𝑅J)

× ξκα(𝑞ν)ξ *
κ ′β (𝑞ν)

∂ 2εn𝑘

∂RIκα ∂RJκ ′β

∣∣∣∣
𝑅=𝑅0

. (63)

The atomic displacements are regarded as perturbation, while
the EPIs are not. In practical calculations, a supercell is
constructed by the given phonon modes, leading to a set of
atomic displacements.[60,61] The second derivatives of the fi-
nite atomic displacement corresponding to the electron eigen-
values are calculated by the second-order difference formula.
The advantage of the finite displacement method is its simpler
algorithm. The disadvantage is the extremely large supercell
corresponding to long-wavelength phonons. Recently, nondi-
agonal supercell was proposed, which can help to reduce the
computational cost.[28]

3.3.2. Ensemble average

Ensemble average is another method, which aims to cal-
culate the thermal average of a physical quantity in the adia-
batic approximation. The properties are calculated by using
a series of the nuclear configurations generated from some
sampling methods, such as the harmonic approximation, the
molecular dynamic, the path-integral molecular dynamic, or

the path-integral Monte Carlo simulations. Taking the elec-
tronic band gap as an example, correcting it due to electron–
phonon interaction using this ensemble average method we
have

Eg(T ) =
∫

|χ(𝑅)|2Eg(𝑅)d3𝑅, (64)

where χ(𝑅) is the nuclear wave functions. In the harmonic ap-
proximation the phonon wave functions can be solved analyti-
cally, and the above equation can be simplified by the Gaussian
integral[9]

Eg(T ) = Πν

∫
dxν

1√
2π⟨x2

ν⟩T
e
− x2

ν

2⟨x2
ν ⟩T Eg(𝑅), (65)

with

⟨x2
ν⟩T = (2Nν +1) l2

ν . (66)

Here, lν is the zero-point vibrational amplitude of the ν th
mode, Nν is the Bose–Einstein occupation, 𝑅 depends on the
normal coordinate xν . More details and applications of this
method can be found in Refs. [9,10,62].

4. Applications
4.1. Bulk wurtzite BeO

Using the methods listed, we take beryllium oxide (BeO)
as an example to demonstrate how the completeness of the
basis set and the inclusion of the EPIs impact on the quasi-
particle band gaps. This material is a wide bandgap oxide
crystal, whose most stable crystalline phase is of the wurtzite
type. Therefore, we label its bulk phase as w-BeO (space
group: P63mc) in the following discussions. Here w-BeO ex-
hibits unique properties, such as high melting points,[63] wide
band gap,[64–66] high thermal conductivity,[67] and high elec-
trical resistivity,[68] meaning that it has potential for a wide
range of applications in optoelectronic devices.[68,69] In recent
years, many theoretical calculations[70–73] and experimental
measurements[64–66,70] have been performed to investigate its
electronic and optical properties. The role of EPIs on the
quasiparticle and optical band gaps, however, has never been
considered. The fact that they are naturally included in the ex-
perimental observations but absent in the theoretical descrip-
tions means that a direct comparison between experiments and
these theoretical results is unreasonable. The absence of EPIs
in the reported theoretical calculations also means that con-
trary to experiments, no temperature dependence of these ex-
perimental observable should exist.

4.1.1. Quasiparticle band structure

To minimize the artificial effects for comparison of theo-
retical and experimental results, we use the experimental lat-
tice parameters (a = 2.698 Å, c = 4.380 Å)[74,75] for all the
band gap calculations. The DFT calculations were performed
by adopting the generalized gradient approximation of the
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Perdew–Burke–Ernzerhof (PBE) form[76] for the exchange–
correlation potential. The band structure was first calculated
at the PBE level. Three codes were used, i.e., WIEN2k,[4]

Vienna ab initio simulation package (VASP),[77] and QUAN-
TUM ESPRESSO (QE).[78] The first one is LAPW based and
the latter two are PPs based. For the BZ integration, a 1000
k-point mesh was used in WIEN2k, and a 6×6×2 Γ centered
k-point mesh was used in the VASP and QE calculations. We
chose the parameters RMT(Be,O) = (1.4, 1.5) Bohr and RK-
max = 7.0 for the LAPW basis in WIEN2k. In the VASP and
QE calculations, the energy cutoffs were chosen as 800 eV and
70 Ry, respectively. The results are shown in Table 1, consis-
tent with the previous theoretical calculations.[73,79] The value
of 7.44 eV in Ref. [79] is due to the fact that different lat-
tice constants were used in their calculations. Our calculations
exactly reproduce their value when their lattice constants are
chosen.

Table 1. Calculated PBE band gaps (in eV) from three theoretical ap-
proaches of w-BeO and compared with others’ calculations.

VASP WIEN2k QE
This work 7.61 7.63 7.65

Others 7.66a 7.44b

aRef. [73], bRef. [79].

Then we apply the quasiparticle corrections, using the
G0W0 and GW0 approaches. To decipher the impact of
the high-energy states in a clean manner, i.e., without ar-
tificial effects from other issues like the pseudoization of
the wave functions,[36,37] the G0W0 and GW0 calculations
were performed in the all-electron LAPW basis using the
GAP2 code.[80] For the frequency dependence of the screened
Coulomb interaction, the correlation self-energy was calcu-
lated along the imaginary axis and then analytically contin-
ued into the real frequency axis by using the multipole fitting
scheme, as detailed in Ref. [80]. With standard LAPW ba-
sis set, the PBE and GW0 band diagram obtained by WIEN2k
and GAP2 codes are shown by black and red solid lines in
Fig. 4. The smallest direct band gap is at Γ [k = (0,0,0)]
from the valence band maximum (VBM) to the conduction
band minimum (CBM). The PBE direct band gap is 7.63 eV
and the GW0 direct band with the standard LAPW basis is
10.45 eV. Then, motivated by recent separate studies of Jiang
et al.[5] and Nabok et al.[6] on the role played by HLOs in
GW calculations, we investigate how the GW0 band gaps of
w-BeO can be changed by including HLOs in the all-electron
LAPW-based GW calculations. The GW results are converged
at 12 × 12 × 4 k-point mesh, the parameters corresponding
to HLOs are nLO = 1, and lLO

max = 5. The specific values of
GW calculations with/without HLOs are shown in Table 2.
In comparison to the GW calculation without HLOs, the in-
clusion of HLOs in GW0 calculations shifts down the VBM

by 0.67 eV and shifts down the CBM by 0.31 eV. The re-
sults are shown by blue solid lines in Fig. 5, compared with
the red ones without HLOs. The comparison of the PBE and
GW0 without/with HLOs electronic band structure calculations
based on the LAPW basis are shown in Fig. 4, where the fermi
energy is set as zero. It is clear that the inclusion of HLOs
has a noticeable influence on the GW corrections, which en-
larges the direct band gaps by 0.33/0.36 eV in G0W0/GW0 cal-
culations. Consistent with the theoretical results for h-BN in
Ref. [7], this highlights the importance of high-energy states
for descriptions of the quasiparticle excitations in such wide
gap systems.
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Fig. 4. Electronic band structure calculation by means of the LAPW
method showing PBE (black solid lines) and GW0 without/with HLOs
(red/blue solid lines) results of w-BeO, where the fermi energy is set as
zero (gray dotted line). The green arrow line represents the direct band
gap transition.
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Fig. 5. Electronic band structure calculation by means of the LAPW
method showing GW0 without/with HLOs (red/blue solid lines) results of
w-BeO. The green arrow line represents the direct band gap transition.

Table 2. Calculated band gaps (in eV) of w-BeO. The influence of
HLOs on the GW band gaps and EPI-induced ZPR are highlighted.

This work without HLOs HLOs HLOs+ZPR
PBE G0W0 GW0 G0W0 GW0 G0W0 GW0

7.63 10.04 10.45 10.37 10.81 9.97 10.41
Expt 10.63±0.1a 10.7b 10.6c

aRef. [64], bRef. [65], cRef. [66].

4.1.2. EPIs-induced bandgap renormalization

Next, we investigate the EPI-induced band gap renormal-
izations. This is carried out by using the YAMBO code,[23]

with the KS orbitals and eigenvalues generated from the QE
calculations. The EPIs were described by using Eq. (58)
within DFPT at PBE level. The electron–phonon self-energy
was obtained using 1000 random q-points in the phonon BZ,
a uniform 6 × 6 × 2 k-grid mesh in the electron BZ and 32
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electronic bands. In Fig. 6, we show the EPIs induced cor-
rections to the direct band gap of w-BeO. The EPIs-induced
correction to the static direct band gap has a weak T depen-
dence below room temperature (300 K) and increases almost
linearly beyond it. To figure out the contribution of EPIs to
VBM and CBM, we present the T -dependent VBM and CBM
renormalizations in the inset of Fig. 6. At 0 K, the EPIs shift
up the VBM by 0.17 eV and shift down the CBM by 0.23 eV.
The ZPR to the direct band gap is −0.40 eV, as shown in the
last two columns in Table 2. For most typical semiconductors,
such as Si and GaAs, the ZPRs are only about 50–70 meV (see
Table 3 in Ref. [81]), which are lower than w-BeO. Hence, the
EPIs are strong in w-BeO.
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Temperature (K)
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Fig. 6. T -dependent direct band gap renormalization of w-BeO calcu-
lated by using Eq. (58) within DFPT at PBE level (blue). The zero-point
renormalization is −0.40 eV. The inset shows the T -dependent VBM
(black) and CBM (red) renormalizations.

The corrections of HLOs and EPI induced are both large.
However, both of them tend to be ignored in practical cal-
culations. When the PPs based method is used for the de-
scription of the quasiparticle energies, the former error (due to
HLOs) may seem smaller due to contributions from the pseu-
doization of the wave functions, as detailed in Refs. [36,37].
We should note that an in-depth understanding of quasiparti-
cle band gaps from the theoretical perspective requires contri-
bution from each term in the simulations to be accurately de-
scribed. In w-BeO, the band gap increased by including HLOs
in GW0 calculation (0.36 eV) is almost equivalent to the one
decreased by EPIs (0.40 eV). The cancelation between these
two terms results in the fact that the final value is close to the
one when both of them are neglected. The large magnitude for
both of them means that to get a correct understanding of its
band structure, one needs to consider both the effects of HLOs
in GW calculations, and the EPI-induced band renormaliza-
tion.

4.2. Monolayer honeycomb BeO

As a member of the isoelectronic series of the first-row
elements such as graphene and h-BN, studies have predicted
that BeO may also exist in an sp2 hybridized atomic layer
with a honeycomb structure (h-BeO).[82,83] This h-BeO (space

group: P63/mmc) has the most stable graphitic phase of
wurtzite materials.[84] Theoretical surveys of possible mono-
layer honeycomb structures of II–VI semiconductors have also
shown that h-BeO has a formation energy, comparable to
that of its bulk phase.[85] Therefore, this monolayer struc-
ture was deemed to be most experimentally achievable among
its two-dimensional candidates.[86] Recently, Shih et al.[87]

demonstrated the feasibility of growing h-BeO monolayers
by MBE, and illustrated that the large-scale growth, weak
substrate interactions, and long-range crystallinity, making h-
BeO an attractive candidate for future technological applica-
tions. Converging the band gap for two-dimensional materials
with HLOs included is still technically challenging in GAP2.
Therefore, we resort to PBE to demonstrate the key feature of
its band structure and focus on EPIs in this part. In optimiz-
ing the structure, VASP along with the projector augmented
wave (PAW) pseudopotentials was adopted.[88] The optimized
lattice constants are a0 = b0 = 2.68 Å, in good agreement
with previous calculation.[89] The band structure calculated
by means of the WIEN2k method is shown in Fig. 7. The
PBE band gaps are given by three theoretical approaches can
be found in Table 3, consistent with the previous theoretical
calculations.[89]
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Fig. 7. DFT-PBE electronic band structure calculation by means of
WIEN2k method (black solid lines) of h-BeO. The orange (blue) arrow
line represents the indirect (direct) band gap transition.

Table 3. Calculated PBE band gaps (in eV) from three theoretical ap-
proaches of h-BeO and compared with the others’ calculations.

VASP WIEN2k QE
This work 5.33 5.35 5.35

Others 5.45a,b 5.45c 5.38d

aRef. [73], bRef. [90], cRef. [91], dRef. [89].

The value of 5.45 eV in Refs. [73,90,91] is due to the dif-
ferent optimized Be–O bond length, which are 1.53, 1.525 and
1.524 Å in their calculations and 1.547 Å in our calculations.
We can obtain the similar values when their lattice constants
are chosen. In the electronic structure calculations of h-BeO,
we adopted the same parameters as the calculations of w-BeO,
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except for a 6× 6× 1 Γ centered k-point mesh in the VASP
and QE calculations. Different from the w-BeO bulk phase,
this monolayer has an indirect fundamental band gap between
the VBM at K and the CBM at Γ . The direct gap at Γ is larger.
In the EPIs calculations, electron–phonon self-energy was ob-
tained using 32 electronic bands, a uniform 36×36×1 q-point
mesh in the phonon BZ and the same k-grid mesh for the elec-
tron BZ. The ZPR of h-BeO to the fundamental indirect band
gap is −0.37 eV (shown in Fig. 8), larger than most typical
semiconductors, meaning that the EPIs are equally strong in
monolayer h-BeO and in its bulk w-BeO phase. As shown in
the inset of Fig. 8, EPIs contribute almost equally to VBM and
CBM. At 0 K, the EPIs shift up the VBM by 0.21 eV and shift
down the CBM by 0.16 eV.
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Fig. 8. The T -dependent fundamental indirect band gap renormaliza-
tions of h-BeO calculated by using Eq. (58) within DFPT at PBE level
(blue). The zero-point renormalization is −0.37 eV. The inset shows
the T -dependent VBM (black) and CBM (red) renormalizations.

5. Conclusions and perspectives

In summary, we have reviewed the theoretical methods
for first-principles quasiparticle band structure and EPIs calcu-
lations in solids. Including HLOs in the all-electron LAPWs-
based GW calculations is crucial in getting the quasiparticle
band gaps converged. For w-BeO, this widens the direct band
gap by 0.33 eV (0.36 eV) in the G0W0 (GW0) calculations.
Adding in EPI, on the other hand, narrows it by 0.40 eV. For
monolayer h-BeO, the EPI-induced ZPR is −0.37 eV for the
fundamental indirect band gaps. These values of ZPRs are
larger than most typical semiconductors. In w-BeO, correc-
tions from including the HLOs and the EPIs cancel each other.
This can explain the fortuitous agreement between experiment
and theory when the basis set is incomplete and the EPIs are
absent. The phonon-induced renormalization of the band gaps,
a term often neglected in practical calculations, is also empha-
sized by its large magnitude.
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[47] Friedrich C, Schindlmayr A, Blügel S and Kotani T 2006 Phys. Rev. B
74 045104

[48] Friedrich C, Müller M C and Blügel S 2011 Phys. Rev. B 83 081101
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