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a b s t r a c t

The GW method has become the state-of-the-art approach for the first-principles description of
the electronic quasi-particle band structure in crystalline solids. Most of the existing codes rely on
pseudopotentials in which only valence electrons are treated explicitly. The pseudopotential method
can be problematic for systems with localized d- or f -electrons, even for ground-state density-functional
theory (DFT) calculations. The situation can become more severe in GW calculations, because pseudo-
wavefunctions are used in the computation of the self-energy and the core–valence interaction is
approximated at the DFT level. In this work, we present the package FHI-gap, an all-electron GW
implementation based on the full-potential linearized augmented planewave plus local orbital (LAPW)
method. The FHI-gap code can handle core, semicore, and valence states on the same footing,
which allows for a correct treatment of core–valence interaction. Moreover, it does not rely on any
pseudopotential or frozen-core approximation. It is, therefore, able to handle a wide range of materials,
irrespective of their composition. Test calculations demonstrate the convergence behavior of the results
with respect to various cut-off parameters. These include the size of the basis set that is used to expand
the products of Kohn–Shamwavefunctions, the number of k points for the Brillouin zone integration, the
number of frequency points for the integration over the imaginary axis, and the number of unoccupied
states. At present,FHI-gap is linked to theWIEN2k code, and an implementation into theexciting code
is in progress.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The central quantity defining the electronic properties of solids is the electronic band structure, typicallymeasured by direct and inverse
photo-emission spectroscopy (PES/IPS) [1]. In the past decades, themost commonly used approach to theoretically describe the electronic
structure (in particular electron density and total energy) has been the Kohn–Sham (KS) density-functional theory (DFT) in the local-
density approximation (LDA) or generalized gradient approximation (GGA) [2,3]. However, comparing KS eigenvalues with experimental
electronic band structures lacks rigorous justification, and, hence, may exhibit noticeable discrepancies. In particular, the band gaps of sp
semiconductors obtained from LDA/GGA KS single-particles energies are systematically underestimated, with errors being of the order
of 30%–100% [4]. A proper theoretical framework for the description of electronic band structures of extended systems is provided by
many-body perturbation theory based on the interacting Green function G(r, r′;ω) [5], whose poles in the complex frequency plane
determine the single-particle excitation energies of the system. All the information about the interaction among electrons is contained
in the self-energy, which relates the interacting Green function to the non-interacting one via Dyson’s equation. The simplest realistic
approximation to the self-energy, treating the exchange interaction exactly and containing dynamical correlation effects, is the GW
approximation, originally proposed by Hedin [6,7]. Under the assumption that the KS eigenvalues and eigenfunctions constitute a good
zeroth-order approximation to the corresponding quasi-particle energies, the self-energy is calculated as a first-order correction to the
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KS eigenvalues. In this approach, termed G0W0, both the Green function, G, and the dynamically screened Coulomb potential, W , are
calculated using KS eigenvalues and eigenfunctions. We note that the exact KS results may well be a good starting point as shown by the
Slater–Janak transition state theorem [8]. However, approximate exchange–correlation functionals suffer from various shortcomings, as,
e.g. electron self-interactions. The latter is also corrected by the G0W0 approach. If self-interaction or other errors are large, the starting
point xc functional may not be good enough and must be replaced by a better one.

Since the seminal work by Hybertsen and Louie [9], and by Godby et al. [10], the G0W0 method with LDA as a starting point has
established itself as a state-of-the-art tool for calculating the electronic band structure of materials, noticeably improving agreement
with experiment over LDA/GGA (see, e.g., Refs. [4,11] and references therein). Often, however, a better starting point is necessary to
achieve further improvement [12]. A majority of these calculations have been carried out within the pseudopotential approximation,
in which the core–valence interaction is kept at the LDA level and pseudo-wavefunctions are used. The appearance of full-potential all-
electron calculations starting in 2002 [13–15] showed a noticeable underestimation of band gaps, in clear contradiction with previous
results. Discrepancies were traced back to the approximations implicit in the pseudopotential method [15,16]. These findings highlight
the importance of an all-electron treatment not only as benchmark but also as a basis for the development of new electronic-structure
methods.

In this paper, we present the implementation of the FHI-gap (GW with Augmented Planewaves) package, an all-electron GW code
based on the full-potential linearized augmented planewave (LAPW) method, or its more recent version, the APW plus local-orbital
(APW+lo) method. Since both, LAPW and APW+lo, are schemes to linearize the original APW method, we use the terminology LAPW
synonymously. Our code has been developed as an add-on to the Wien2k code [17] (see Appendix E), but an according implementation
into the exciting code [18] is currently in progress. The main features of the methodology used in our package are the following. (i) The
products of Kohn–Sham wavefunctions are expanded into a dual basis, consisting of planewaves in the interstitial region and spherical
harmonics inside the atom-centered non-overlapping spheres. (ii) The numerical Brillouin zone (BZ) integrations are carried out by a
generalized tetrahedron method [19]. (iii) The Γ point (q = 0), at which both bare and screened Coulomb interaction are singular, is
included in the BZ integrations, and the divergences are accurately treated within k · p perturbation theory. (iv) frequency integrations
are carried out on the imaginary axis. (v) In addition, the code is parallelized using the message-passing interface library.

An advantage of our code is the capability to explore d- and f -electron systems [20,21], materials traditionally categorized as strongly
correlated. For such materials, a full-potential all-electron treatment is highly desirable. DFT with LDA or GGA exchange–correlation
functionals fails dramatically for many such systems, and so may G0W0 carried out on top of LDA or GGA. Here, much (possibly all) of
the problem may stem from the LDA/GGA starting point. As a first step towards establishing G0W0 for d and f -electron systems, we
have implemented G0W0 based on LDA+U . This simple and effective approach has been applied to a series of prototype d and f -electron
systems [20–22] and shown to overcome the major shortcomings of LDA/GGA.

In the following, we will give a short overview of the GW approach and the G0W0 approximation. This serves as a basis to describe
the details of our implementation. We will sketch the basics of the LAPW method and the mixed basis to expand the GW -related non-
local quantities. The final expressions, as implemented in the code, will be derived thereafter. Convergence tests with respect to several
parameters are presented for Si to illustrate how different levels of accuracy can be achieved.

2. Theoretical background

2.1. The GW approach

The single-particle excitation energies of amany-electron systemare given by the poles of the interacting single-particle Green function
G(r, r′;ω). These can be obtained by solving the quasi-particle equation

−
1
2
∇

2
+ Vext(r)+ VH(r)


Ψnk(r)+


Σ(r, r′; Eqp

nk) Ψnk(r′)dr′ = Eqp
nk Ψnk(r), (1)

where Vext(r) and VH(r) are the external (nuclear) and Hartree potential, respectively, Σ(r, r′;ω) is the self-energy, and Ψnk(r) is the
quasi-particle wavefunction. k is the Bloch wavevector in the first BZ that accounts for the translational symmetry. Note that atomic units
are used throughout the paper.

The self-energy contains all electron–electron interactions beyond the Hartree term, and is in general non-hermitian so that the
corresponding eigenvalues, Eqp

nk , are complex. Their real parts ϵqpnk ≡ ℜ

Eqp
nk

represent the single-particle excitation energies of the system,

while their imaginary parts are related to the excitation’s lifetime. In the GW approximation [6], only the first-order in the expansion of
the self-energy in terms of the dynamically screened Coulomb potential is included:

Σ(r, r′;ω) =
i

2π


G(r, r′;ω + ω′)W (r′, r;ω′) eiω

′ηdω′ (2)

where η is an infinitesimal positive number. The dynamically screened potentialW (r, r′;ω) is given by

W (r, r′;ω) = v(r, r′)+


v(r, r1) P(r1, r2;ω)W (r2, r′;ω) dr1 dr2, (3)

where v(r, r′) = 1/|r − r′| denotes the bare Coulomb potential, and P(r, r′;ω) represents the polarizability in the random-phase
approximation (RPA),

P(r, r′;ω) = −
i

2π


G(r, r′;ω + ω′) G(r′, r;ω′) eiω

′ηdω′. (4)
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2.2. The G0W0 approximation

The solution of the above system of Eqs. (1)–(4) requires, in principle, a self-consistent procedure. Assuming, however, that the
respective Kohn–Sham quantities are good zeroth-order approximations to the quasi-particle counterparts, Hybertsen and Louie [9]
proposed a scheme where the quasi-particle energy ω = ϵ

qp
nk is obtained as a first-order correction to the Kohn–Sham eigenvalue ϵnk,

ϵ
qp
nk = ϵnk +


ψnk (r) | ℜ


Σ

r, r′; ϵqpnk


− V xc (r) δ


r − r′


| ψnk


r′


(5)

where V xc is the DFT exchange–correlation potential, and ψnk(r) are the Kohn–Sham eigenfunctions. The self-energyΣ(r, r′;ω) is given
like in Eq. (2) but replacing G by the non-interacting single-particle Green function G0 obtained from the Kohn–Sham states

G0(r, r′;ω) =


nk

ψnk(r)ψ∗

nk(r
′)

ω − ϵ̃nk
(6)

with ϵ̃nk ≡ ϵnk + iηsgn(ϵF − ϵnk). The dynamically screened Coulomb potentialW0(r, r′;ω) is given by

W0(r, r′;ω) =


ε−1(r, r1;ω) v(r1, r′) dr1 (7)

where ε(r, r′;ω) is the dielectric function calculated as

ε(r, r′;ω) = δ(r, r′)−


v(r, r1) P0(r1, r′;ω) dr1. (8)

P0(r, r′;ω) is the RPA polarizability computed according to Eq. (4), but with G replaced by G0. Carrying out the integration over ω′ we
obtain:

P0(r, r′;ω) = 2


nk,mk′

fnk(1 − fmk′)ψnk(r)ψ∗

mk′(r)ψ∗

nk(r
′)ψmk′(r′)


1

ω − ϵmk′ + ϵnk + iη
−

1
ω + ϵmk′ − ϵnk − iη


=


n,m


k,q

Fnm(k, q;ω) ψnk(r)ψ∗

mk−q(r)ψ
∗

nk(r
′)ψmk−q(r′) (9)

where fnk denotes the occupation number of the state nk, and the factor of 2 accounts for the spin degeneracy. Here, we have introduced
q = k − k′ and the factor

Fnm(k, q;ω) ≡ 2fnk(1 − fmk−q)


1

ω − ϵmk−q + ϵnk + iη
−

1
ω + ϵmk−q − ϵnk − iη


(10)

depending on frequency and occupation.
It is common and convenient to decompose the self-energy into exchange and correlation terms by defining

W c
0 (r, r

′
;ω) = W0(r, r′;ω)− v(r, r′). (11)

The exchange part, which is just given by the Hartree–Fock exchange potential, reads

Σx(r, r′) =
i

2π


G0(r, r′;ω′)v(r′, r)eiω

′ηdω′

= −


nk

fnkψnk(r)v(r′, r)ψ∗

nk(r
′). (12)

The GW correlation self-energy is obtained from a frequency integral as

Σ c(r, r′;ω) =
i

2π


G0(r, r′;ω + ω′)W c

0 (r
′, r;ω′) dω′. (13)

2.3. The G0W0 equations in matrix form

Let us start with a fewwords on the notation: all wavefunctions as well as the basis functions are defined such that they are normalized
within the unit cellwith volumeΩ .When a function f k(r), characterized by thewavevectork, is involved in integrals over thewhole crystal
space, V ≡ NcΩ , with Nc being the number of unit cells, we will use its Bloch form

f k(r) →
1

√
Nc


R

eik·Rf k(r + R), (14)

where R are Bravais lattice vectors.
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To convert the G0W0 equations into matrix form, we need a basis set, χq
i (r), that can describe products of two Kohn–Sham

wavefunctions accurately. In such representation,

ψnk(r) ψ∗

mk−q(r) =


i

M i
nm(k, q) χ

q
i (r), (15)

M i
nm(k, q) are expansion coefficients given by

M i
nm(k, q) ≡


Ω


χ

q
i (r) ψmk−q(r)

∗
ψnk(r)dr. (16)

We will denote this basis the product basis to distinguish it from the basis that is used to expand single-particle orbitals. All two-particle
functions, O, including the polarizability, P0(r, r′;ω), the bare Coulomb interaction, v(r, r′), the dielectric function, ε(r, r′;ω), and the
screened Coulomb interaction,W (r, r′;ω), will be expanded into this product basis according to

O(r, r′) =

BZ
q


i,j

Oij(q) χ
q
i (r)


χ

q
j (r

′)
∗
. (17)

The diagonal elements of the bare (Hartree–Fock) exchange self-energy in the product basis read:

Σx
nk ≡


V
dr

V
r′ [ψnk(r)]∗Σx(r, r′) ψnk(r′)

= −


mk′

fmk′


V
dr

V
dr′ [ψnk(r)]∗ ψmk′(r) v(r, r′) ψnk(r′)


ψmk′(r′)

∗
,

= −
1
Nc

BZ
q


i,j

vij(q)

m

fmk−q

M i

nm(k, q)
∗

M j
nm(k, q), (18)

where vij(q) is the bare Coulomb potential in the product basis representation. Thematrix elements of the polarizability (Eq. (9)), Pij(q, ω),
can be written as

Pij(q, ω) ≡


V


V


χ

q
i (r)

∗ P(r, r′;ω) χq
j (r

′) dr dr′

=
1
Nc

BZ
k


n,m

Fnm(k, q;ω)M i
nm(k, q)


M j

nm(k, q)
∗
. (19)

Due to the singularity of the bare Coulomb interaction in reciprocal space as q goes to zero, the dielectric function at q → 0 requires
a special treatment. Mathematically, it is more convenient to use the symmetrized form of the dielectric function [23], which, in matrix
form, can be obtained from Pij(q, ω) by

εij(q, ω) = δij −

lm

v
1
2
il (q)Plm(q, ω)v

1
2
mj(q). (20)

The correlation term of the screened Coulomb interaction (Eq. (7)) can then be calculated through

W c
ij (q, ω) =


lm

v
1
2
il (q)


ε−1
lm (q, ω)− δlm


v

1
2
mj. (21)

The diagonal matrix elements of the correlation self-energy can be written as

Σ c
nk(ω) ≡


V
dr

V
r′ [ψnk(r)]∗Σ c(r, r′;ω) ψnk(r′)

=


mk′


dr


dr′
i

2π


dω′

1
ω + ω′ − ϵ̃mk′

[ψnk(r)]∗ ψmk′(r)W c
0 (r, r

′
;ω′) ψnk(r′)


ψmk′(r′)

∗
=

1
Nc

BZ
q


m

i
2π


∞

−∞

dω′
Xnm(k, q;ω′)

ω + ω′ − ϵ̃mk−q
(22)

where the auxiliary quantity Xnm(k, q;ω) is defined as

Xnm(k, q;ω) ≡


ij


M i

nm(k, q)
∗

W c
ij (q, ω)M

j
nm(k, q). (23)

As we can see from Eqs. (21) and (23),M i
nm often appears together with v

1
2
ij . We therefore introduce

M̃ i
nm(k, q) ≡


p

v
1
2
ip (q)M

p
nm(k, q). (24)
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Using this contracted quantity gives

εij(q, ω) = δij −
1
Nc

BZ
k


n,m

Fnm(k, q;ω) M̃ i
nm(k, q)


M̃ j

nm(k, q)
∗

(25)

and

Xnm(k, q;ω) ≡


ij


M̃ i

nm(k, q)
∗ 

ε−1
ij (q, ω)− δij


M̃ j

nm(k, q). (26)

The exchange part of the self-energy now reads

Σx
nk = −

1
Nc

BZ
q


i,j

occ
m


M̃ i

nm(k, q)
∗

M̃ j
nm(k, q). (27)

In this way, an explicit construction of the polarizability and screened Coulomb interaction matrix can be avoided.
The G0W0 quasi-particle energies are then given by

ϵ
qp
nk = ϵnk + Znk


ℜΣ c

nk (ϵnk)+Σx
nk − V xc

nk


(28)

where V xc
nk are the diagonal matrix elements of the exchange–correlation potential that is employed in the single-particle KS Hamiltonian,

and Znk is the so-called QP renormalization factor arising from the energy dependence of the correlation self-energy,

Znk =


1 −


∂

∂ω
ℜΣ c

nk (ω)


ϵnk

−1

. (29)

3. Basics of LAPW

The basic idea behind the LAPWmethod is that, close to nuclei, potential and wavefunctions are similar to those in the free atoms, and
slowly varying in between the atoms. Hence, Slater [24] proposed to partition the unit cell into non-overlapping muffin-tin (MT) spheres,
centered around each atom (indexed by α, positioned at rα), and the interstitial region (I). Correspondingly, the LAPW basis consists of
two types of functions inside the two types of volumes [25]:

φk
G(r) =



lm


Aαlm(k + G)uαl(rα, El)+ Bαlm(k + G)u̇αl(rα, El)


Ylm(r̂α) rα < RαMT,

1
√
Ω

ei(k+G)·r r ∈ I,

(30)

with rα ≡ r− rα and RαMT being the radius of α-th MT sphere. ul(rα, ϵ) are the solutions of the radial Schrödinger equation in the spherical
potential of the respective MT sphere, taken at a fixed reference energy El and u̇αl(rα, El) is its energy derivative. The augmentation
coefficients, Aαlm(k + G) and Bαlm(k + G), are determined from the continuity of the basis functions and their first derivatives at the
sphere boundary.

The LAPW functions can be supplemented by the so-called local orbitals (LO), defined as [26]:

φLO
lm (r) =



ALO
αlmuαl(r

α, El)+ BLO
αlmu̇αl(r

α, El)+ CLO
αlmuαl(r

α, E(2)l )


Ylm(r̂α) rα < RαMT

0 r ∈ I.

(31)

Here uαl(r, E
(2)
l ) is a radial wavefunction evaluated at a different linearization energy, E(2)l , enabling the proper treatment of a semicore

state. The coefficients ALO
αlm, B

LO
αlm, and CLO

αlm are determined by the requirement that φLO
lm (r) is normalized and is zero in value and slope at

the MT sphere boundary.
Eqs. (30) and (31) contain the basis functions for the APW+lo method [27] as special cases. In this scheme, Bαlm(k + G) = 0, reducing

an LAPW to an APW basis function, and for the relevant valence states these functions are supplemented by a local orbital with CLO
αlm = 0,

taken at the same trial energy El as the corresponding APW.
One can write down the basis set of all APW-related methods in its most general form as

φk
G(r) =



ζ lm

Aαζ lm(k + G)uαζ l(rα)Ylm(r̂α) rα < RαMT,

θ LOG
√
Ω

ei(k+G)·r r ∈ I.
(32)

θ LOG is equal to one for a normal APW or LAPW function, but zero for a local orbital. The summation in the first term over lm is reduced
to a single term when φ corresponds to a LO function. The index ζ has been introduced to denote different possible radial functions,
including energy derivatives as appearing in Eq. (30). This notation also comprises higher-order basis functions as implemented in the
exciting code [28,18].
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Fig. 1. Flowchart of the FHI-gap code. The gray boxes indicate quantities obtained from the ground-state calculation.

4. Implementation

In this section, we present the implementation of the FHI-gap package. The basic structure of the code is illustrated by the flowchart
in Fig. 1. Each block represents an important quantity, and the lines connecting different blocks illustrate the inter-dependence of these
quantities. The blocksmarked by the gray background display results obtained from the ground-state package. In particular, KS eigenvalues
and eigenfunctions (together with the basis functions), corresponding to a converged DFT potential, are the starting point for the G0W0
run.

We will present below details about the implementation of all the quantities, which are relevant for the G0W0 calculations. Before
that, however, we want to briefly address partial self-consistency, which has been discussed in the literature by many authors [4,29,30],
and often leads to further improvements. In such schemes, the diagonal correlation self-energy, Eq. (22), is recalculated by quasi-particle
energies with fixedW0, hence it is called GW0, or the energy-only GW0 [29,30]. The GW0 quasi-particle energies can be easily obtainedwith
little computational overhead, since the auxiliary matrix Xnm(k, q;ω) as defined in Eq. (23), which is one of the most time-consuming
quantities, is fixed here and therefore needs to be calculated only once. This feature is also implemented in our code.

4.1. The product basis functions

The LAPW basis is a mixed one, where the basis functions have different character in the MT region and the interstitial. To represent
products of two Kohn–Sham wavefunctions accurately, a basis with similar features should be used. In this section, we present the
procedure to construct an optimal product basis within the LAPW framework.

The product of two spherical harmonics can be expanded in spherical harmonics using Clebsch–Gordan coefficients, and the product
of two planewaves is naturally a planewave. Hence a mixed basis set making use of the space partitioning into muffin-tin spheres and
interstitial region is straightforward. Analogous to the suggestion of Kotani and van Schilfgaarde [13], we use an optimized set of functions
consisting of planewaves in the interstitial region and a spherical harmonics expansion within the MT spheres. The latter are similar to
the product basis originally proposed by Aryasetiawan and Gunnarsson [31].

Inside the MT sphere of atom α, we define our basis functions as

γαNLM (rα) = υαNL (rα) YLM

r̂α

. (33)

An optimal set of radial functions υαNL (rα) is constructed from the products of the radial wavefunctions (see Eq. (30)) by the following
procedure.

• Following Ref. [32], we take only uαl(rα)’s with l ≤ lMB
max, and u̇αl(r)’s are not taken into account. A careful analysis regarding the impact

of this approximation on the self-energy of various materials is under way.
• For each L in υαNL (rα), we take all the products of two radial functions uαl(rα)uαl′(rα) which fulfill the triangular condition |l − l′| ≤

L ≤ l + l′.
• We calculate the overlap matrix between these product functions:

Oll′;l1 l′1
=

 RαMT

0
uαl(rα)uαl′(rα)uαl1(r

α)uαl′1(r
α)(rα)2drα. (34)
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• The matrix O(ll′);(l1 l′1)
is diagonalized, yielding the corresponding set of eigenvalues, λMB

N , and eigenvectors, {cll′,N}.
• Eigenvectors corresponding to eigenvalues smaller than a certain tolerance, λMB

min, are assumed to be linearly dependent and discarded;
λMB
min is typically chosen to be 10−4 [33].

• The remaining eigenvectors, after normalization, form the radial basis set:

υαNL(rα) =


ll′

cll′,Nul(rα)ul′(rα). (35)

So defined, the functions {γαNLM} constitute an orthonormal basis. Taking into account the crystalline translational symmetry, we obtain
the optimal product basis functions belonging to wavevector q for the MT region

γ
q
αNLM(r) = eiq·rαυαNL(rα)YLM(r̂α). (36)

In the interstitial region, the product basis is constructed from planewaves. These interstitial planewaves (IPW’s) are not orthogonal,
and the overlap of two IPW’s is given by

OGG′ =
1
Ω


Ω

θI(r) ei(G−G′)·r d3r ≡
1
Ω

IG−G′ (37)

where θI(r) is one in the interstitial, and vanishes otherwise. IG is calculated as

IG =


Ω −


α

V αMT G = 0

− 3

α

V αMT e
iG·rα sin(GR

α
MT)− GRαMT cos(GR

α
MT)

(GRαMT)
3

G ≠ 0
(38)

with V αMT being the volume of MT sphere α. To obtain a set of orthogonal wavefunctions, we diagonalize the overlap matrix by solving the
eigenvalue equation

G′

OGG′SG′i = λIi SGi. (39)

The orthonormal basis set in the interstitial region is then defined by

Pq
i (r) ≡

1
√
Ω


G

S̃Giei(G+q)·rθI(r) (40)

with

S̃Gi ≡
SGi
λIi

. (41)

The planewave expansion is truncated at a certainGMB
max, which is the parameter determining the quality of themixed basis in the interstitial

region.
To summarize, our orthonormal mixed basis set is given by

χ
q
j (r)


≡

γ

q
αNLM(r), P

q
i (r)


, (42)

whose quality is mainly determined by the cut-off parameters lMB
max and GMB

max.
This mixed basis is optimal to represent the products of Kohn–Shamwavefunctions. On the other hand, planewaves are simpler to use.

In particular, the bare Coulomb interaction v(r, r′) is diagonal in the planewave representation. To construct the matrix elements in the
mixed basis representation, it is often necessary to take advantage of the simplicity of the planewave representation. For that purpose, we
use the overlap integrals,

W i
G(q) ≡

1
√
Ω


Ω


χ

q
i (r)

∗ ei(q+G)·rdr, (43)

between these two basis sets frequently. For χq
i (r) ∈ the MT region, i.e., χq

i (r) → γ
q
αNLM(r), this expression becomes

W i
G(q) =

4π
√
Ω

eiG·rα iLY ∗

LM(
q + G)JαNL(|G + q|) (44)

with

JαNL(|G + q|) ≡

 RαMT

0
jL (|G + q| r) υαNL(r)r2dr. (45)

For χq
i (r) ∈ I , i.e., χq

i (r) → Pq
i (r), we obtain

W i
G(q) ≡

1
√
Ω


Ω


Pq
i (r1)

∗ ei(q+G)r1dr1 =
1
Ω


G′

IG−G′ S̃∗

G′ i. (46)
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4.2. Evaluation of M i
nm(k, q)

The expansion coefficients for the product of two Kohn–Sham eigenvectors, M i
nm(k, q), as defined in Eq. (16), are used in both the

construction of the polarizability matrix (Eq. (19)) and the evaluation of the self-energymatrix elements (Eqs. (18) and (22)) and therefore
play a central role in the implementation of our G0W0 approach. In this section, we present detailed expressions for the evaluation of
M i

nm(k, q).
Using the expansion of the Kohn–Sham wavefunctions in terms of LAPW basis functions, φk

G(r) (Eq. (32)),

ψnk(r) =


G

Cnk,Gφ
k
G(r) (47)

ψnk(r) can be written as

ψnk(r) =



ζ lm

Ank,αζ lm uαζ l(rα) Ylm(r̂α) rα < RαMT,

1
√
Ω


G
θ LOG Cnk,G ei(k+G)·r r ∈ I

(48)

with

Ank,αζ lm ≡


G

Cnk,G Aαζ lm(k + G). (49)

The calculation of thematrix elements obviously differs for the two situations thatχq
i corresponds to a function in themuffin-tin sphere

or to an interstitial planewave. For a basis function in the muffin-tin region, χq
i → γ

q
αNLM(r), one obtains with Eqs. (36) and (48):

M i
nm(k, q) = e−iq·rα


l1m1


l2m2


G
l1m1
LM;l2m2

∗
ζ1ζ2

Ank,αζ1 l1m1A
∗

mk−q,αζ2 l2m2
⟨NL|ζ1l1, ζ2l2⟩α. (50)

Here Glm
l1m1;l2m2

are the corresponding Gaunt coefficients, defined as

Glm
l1m1;l2m2

≡


dr̂

Ylm(r̂)

∗ Yl1m1(r̂)Yl2m2(r̂), (51)

where the notation

⟨NL|ζ1l1, ζ2l2⟩α ≡

 RαMT

0
υαNL(r) uαζ1 l1(r) uαζ2 l2(r) r

2dr (52)

has been introduced. When χq
i (r) belongs to the interstitial region, χq

i → Pq
i (r), as given by Eq. (40), the corresponding expression reads:

M i
nm(k, q) ≡

1

Ω
3
2


GG′

Cnk,G

Cmk−q,G′

∗
G1

IG−G′−G1 S̃
∗

G1 i. (53)

4.3. The bare Coulomb potential

For the matrix elements of the bare Coulomb potential in the mixed basis,

vij(q) ≡


V


V


χ

q
i (r)

∗
v(r, r′)χq

j (r
′)drdr′

=


Ω


Ω


χ

q
i (r)

∗
R
vc(r, r′ − R) e−iq·Rχ

q
j (r

′) dr′dr, (54)

we need to distinguish between three different cases according to the different domains of the mixed basis functions. For a detailed
derivation of the formulas, see Ref. [33]. Note that the bare Coulomb interaction in reciprocal space is singular at the Γ point (q → 0) and
hence requires special treatment, which is described in Appendix A.

4.3.1. Case 1: χq
i (r) and χ

q
j (r) with r ∈ MT spheres

When r for both functions is inside MT spheres, we have to insert χq
i (r) = γ

q
αNLM(r) and χ

q
j (r) = γ

q
α′N ′L′M ′(r) into Eq. (54). Making use

of the Laplace expansion for the Coulomb potential in terms of spherical harmonics and the addition theorem for lattice harmonics [34],
we obtain

vij(q) = (−1)MSαα
′

LM;L′M ′(q)RαNLRα′N ′L′ +
4π

2L + 1
DαLNN ′δLL′δMM ′δαα′ . (55)
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The radial integrals, RαNL and DαLNN ′ are

RαNL ≡

 RαMT

0
υαNL(r) rL+2dr (56)

DαLNN ′ ≡

 RαMT

0
dr1

 RαMT

0
dr2 r21 r

2
2 υαNL(r1)

rL<
rL+1
>

υαN ′L(r2), (57)

where r< = min(r1, r2) and r> = max(r1, r2). The lattice structure constants Sαα
′

l′m′;lm(q) are given by

Sαα
′

l′m′;lm(q) = g̃l′m′;lm Ξ
αα′

l′+l,m′+m(−q). (58)

Thereby we have introduced the abbreviation

g̃lm;l′m′ = (−1)l(4π)
3
2


(l + l′ + m + m′)!(l + l′ − m − m′)!

(2l + 1)(2l′ + 1)[2(l + l′)+ 1](l + m)!(l − m)!(l′ + m′)!(l′ − m′)!
(59)

and the lattice sums

Ξαα′

lm (q) =


R

eiq·Rαα′

Rl+1
αα′

Ylm(R̂αα′) (60)

with Rαα′ = R + rα − rα′ . The calculation ofΞαα′

λµ (q) is carried out following Refs. [35,36].

4.3.2. Case 2: χq
i (r) and χ

q
j (r) with r ∈ I

Introducing the Fourier expansion of the Coulomb interaction

1
|r1 − r2|

=
1
V


qG

ei(q+G)r1 4π
|q + G|2

e−i(q+G)r2 (61)

and the planewave representation for the basis functions, i.e., χq
i (r) = Pq

i (r) and χ
q
j (r) = Pq

j (r), Eq. (54) becomes

vij(q) =


V


V


Pq
i (r1)

∗ 1
|r1 − r2|

Pq
j (r2) dr1dr2

=


V


V


Pq
i (r1)

∗ 1
V


G

ei(q+G)r1 4π
|q + G|2

e−i(q+G)r2 Pq
j (r2) dr1dr2

=


G


1

√
Ω


Ω


Pq
i (r1)

∗ ei(q+G)r1 dr1


4π
|q + G|2


1

√
Ω


Ω

e−i(q+G)r2 P̃q
j (r2) dr2


=


G

W i
G(q)

4π
|q + G|2


W

j
G(q)

∗

. (62)

4.3.3. Case 3: χq
i (r) with r ∈ I and χq

j (r) with r ∈ MT sphere
In this case, we need to consider χq

i (r) = Pq
i (r) and χ

q
j (r) = γ

q
αNLM(r). Starting again from the Fourier expansion of the Coulomb

potential, we obtain

vij(q) =
(4π)2
√
Ω


G

1
|q + G|

2 S̃∗

G,i i
LYLM


G + q


JαNL(|G + q|) (63)

where S̃Gi is defined in Eq. (41), and JαNL is given in Eq. (45).

4.4. The dielectric function

The dielectricmatrix can be constructed straightforwardly from M̃ i
nm(k, q) according to Eq. (25) except for q → 0 due to the singularity

of the bare Coulomb interaction. To treat this special case properly, we start from the representation of the symmetrized dielectric function
in Fourier space,

εGG′(q, ω) = δGG′ −
4π

|q + G| |q + G′|
PGG′(q, ω). (64)

It can be seen that possible divergences are located in the head, ε00, and the wings, ε0G′ and εG0. Using k · p perturbation theory, the limit
for q → 0 can be calculated analytically [37]. Denoting

q̂0 ≡ lim
q→0

q
|q|

(65)
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as the direction along which the limit of q → 0 is taken, the final expressions are

ε00(0, ω) ≡ H(ω) = 1 −
4π
NcΩ


k


n

δ(ϵF − ϵnk)


pnnk · q̂0

2
ω2

+


n≠n′

Fnn′(k, 0;ω)
 pn′nk · q̂0

ϵn′k − ϵnk

2


(66)

for the head and

ε0G(0, ω) =
1

NcΩ
1/2

4π
|G|


k


n′≠n

Fnn′(k, 0;ω)
p∗

nn′k · q̂0

ϵn′k − ϵnk


MG

nn′(k, 0)
∗

(67)

for the wings. pnn′k are the matrix elements of the momentum operator in the basis of KS eigenvectors, pnn′k ≡ ⟨ψnk|p|ψn′k⟩.
In themixed basis representation, the bare Coulomb interaction is not diagonal. As a result, the head andwings are no longer restricted

to a particular region of the dielectric matrix, hence all components, corresponding to head, wing, and body (denoted by H,W , and B
respectively) appear in general matrix form

εij(0, ω) = εHij (0, ω)+ εWij (0, ω)+ εBij(0, ω). (68)

Using the separation for v
1
2
ij (q)

v
1
2
ij (q → 0) =

v
s 12
ij

q
+ ṽ

1
2
ij (69)

with

v
s 12
ij =

√
4πW i

0(0)W
j∗
0 (0), (70)

as outlined in the Appendix for vij(q) (Eq. (A.4)), one obtains for the three terms:

εHij (0, ω) = H(ω)W i
0(0)W

j∗
0 (0)

εWij (0, ω) =


−


4π
Ω


1
Nc


k


n′≠n

Fnn′k(0, ω)


p∗

nn′k · q̂0

ϵnk − ϵn′k
W i

0


M̃ j

nn′(k, 0)
∗

+
pnn′k · q̂0

ϵnk − ϵn′k
M̃ i

nn′(k, 0)W j∗
0



εBij(0, ω) = δij − W i
0(0)W

j∗
0 (0)−


k


n,n′

Fnn′(k, 0;ω) M̃ i
nn′(k, 0)


M̃ j

nn′(k, 0)
∗

(71)

where we have introduced matrix elements M̃ j
nn′ that contract ṽ

1
2
ij with M i

nn′(k, 0) in the same way as in Eq. (24), i.e., M̃ i
nm(k, q) ≡

p ṽ
1
2 ip(q)Mp

nm(k, q).
A significant improvement of the efficiency can be achieved by using the eigenvectors of the bare Coulomb matrix, v, as a secondary

basis to represent the dielectric function and the subsequent evaluation of the screened Coulomb interaction,W , as described by Friedrich
et al. [38]. Denoting the µ-th eigenvector of v at q as


Uq
iµ


, we define the new basis, henceforth called the ‘‘v-diagonal basis’’, as

|χq
µ⟩ =


i

|χ
q
i ⟩Uq

iµ. (72)

For q ≠ 0, the new basis is just a unitary transformation of the original mixed basis, and therefore the two basis sets are mathematically
equivalent. For q = 0, a special approach is needed for the treatment of the singularity. As shown in Appendix A, the bare Coulombmatrix
at q = 0 can be decomposed into a singular term and a regular term, both being a full matrix in the mixed basis representation. In this
case, the natural choice is to use the eigenvectors of the regular part,


ṽij

, as the new basis. The singular part can be obtained by a unitary

transform

vsµν =


ij

U0∗
iµ v

s
ijU

0
jν . (73)

On the other hand, considering that the singularity in the planewave representation occurs only at G = 0, vsGG′ = 4πδGG′δG0, we replace
vsµν by its exact limit, vsµν = 4πδµ0δν0. In this new basis, the dielectric function is represented as

ε(ω) =


H(ω) wĎ(ω)
w(ω) B(ω)


(74)

where H(ω) is defined in Eq. (66), and

wµ(ω) =


−


4π
Ω


N−1

c

BZ
k


n′≠n

Fnn′k(0, ω)
pnn′k · q̂0

ϵnk − ϵn′k
M̃µ

nn′(k, 0)

Bµν(ω) = δµν − N−1
c

BZ
k


n,n′

Fnn′k(0, ω)M̃
µ

nn′(k, 0)

M̃ν

nn′(k, 0)
∗

(75)
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with µ, ν ≠ 0. The corresponding inverse dielectric matrix now reads (the frequency is dropped to simplify the notation)

ε−1
00 =


H −


µν

wĎ
µB

−1
µνwν

−1

ε−1
µ0 = −


ν

B−1
µνwν


ε−1
00

ε−1
µν = B−1

µν + ε−1
µ0


ε−1
00

−1
ε−1
0ν .

(76)

There are several significant advantages in using the v-diagonal basis. First of all, the matrix multiplication involving the bare Coulomb
matrix, which is diagonal in the new basis, is simplified. Second, the size of the basis can be reduced by keeping only the eigenvectors of v
with a corresponding eigenvalue larger than a certain criterion. Most important, the treatment of the Γ point singularity in the v-diagonal
basis is significantly simpler. Since the contribution related to the singularity at q = 0 is now confined only to ε00 (the head), εµ0 and ε0ν
(the wings), the dielectric anisotropy, i.e., the fact that the dielectric function at the limit of q → 0 depends on the direction, q̂0, along
which the limit is taken, is treated in a more rigorous way using the technique developed by Freysoldt et al. [39].

4.5. The self-energy

In this section, we discuss the evaluation of the diagonal elements of the self-energy (Eqs. (18) and (22)). There aremainly two technical
issues that require careful treatment: the Brillouin zone integration, in particular, the treatment of singular term, and the frequency
dependence.

We start with the Brillouin zone integration. The diagonal elements of the exchange and correlation self-energies can be generally
evaluated as

Σ
x/c
nk = N−1

c

BZ
q
Υ

x/c
nk (q). (77)

In the v-diagonal basis, we have

Υ x
nk(q) = −


µ


m

fmk−q


M̃µ

nm(k, q)
∗

M̃µ
nm(k, q)

Υ c
nk(q, ω) =


m

i
2π


∞

−∞

dω′
Xnm(k, q, ω′)

ω + ω′ − ϵ̃mk−q

(78)

with

Xnm(k, q, ω′) =


µν


M̃µ

nm(k, q)
∗ 

ε−1
µν − δµν


M̃ν

nm(k, q). (79)

In the q → 0 limit, the singular terms in Υ x/c
nk (q) can be separated as follows

Υ
x/c
nk (q → 0) =

Υ
x/cs2
nk

q2
+
Υ

x/cs1
nk

q
+ Υ̃

x/c
nk . (80)

The singularity can then be integrated using the standard analytical technique as described in Appendix B in more detail. By using

Mµ=0
nm (k, q = 0) =


Ω

dr

χ

q=0
µ=0(r)

∗

ψnk [ψmk]∗

= Ω−1/2

Ω

drψnk(r) [ψmk(r)]∗ = Ω−1/2δnm, (81)

we obtain the explicit expressions for Υ x/cs1/2
nk within the v-diagonal basis

Υ xs2
nk =

4π
Ω

fnk

Υ xs1
nk = 0

Υ
cs1/2
nk =

i
2π


∞

−∞

dω′
X s1/2
nk (ω′)

ω + ω′ − ϵ̃mk−q
,

(82)

with

X s2
nk(ω) =

4π
Ω


ε−1
00 (0, ω)− 1


X s1
nk(ω) =


4π
Ω


µ≠0


ε−1
0µ (0, ω)M̃

µ
nn(k, 0)+ ε−1

µ0 (0, ω)

M̃µ

nn(k, 0)
∗


.

(83)
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The correlation self-energy involves a convolution integral over frequency (Eq. (22)). Due to the poles of both the Green function and
W c , infinitesimally close to the real axis, this integral is difficult to converge numerically, i.e., it requires a large number of frequencies.

In our implementation, we compute the polarizability, the screened Coulomb potential, and the self-energy on the imaginary frequency
axis, ω = iu. Making use of the inversion symmetry ofW c on the imaginary frequency axis,W c

ij (q, iu) = W c
ij (q,−iu), we obtain

Σ c
nk(iu) =

1
Nc

BZ
q


m


∞

0

du′

2π
Xnm(k, q; iu′)

2

ϵmk−q − iu


u′2 +


ϵmk−q − iu

2 . (84)

When ϵmk−q is small, the integrand in Eq. (84) is peaked around u′
= u, and therefore a direct numerical integration becomes unstable.

This problem can be circumvented by adding and subtracting the term [40]
∞

0

du′

2π
Xnm(k, q; iu)

(ϵmk−q − iu)

u′2 +

ϵmk−q − iu

2 =
1
2
sgn(ϵmk−q) Xnm(k, q; iu) (85)

such that we arrive at

Σ c
nk(iu) =

1
Nc

BZ
q


m


∞

0

du′

2π


Xnm(k, q; iu′)− Xnm(k, q; iu)

 2

ϵmk−q − iu


u′2 +


ϵmk−q − iu

2 +
1
2
sgn(ϵmk−q) Xnm(k, q; iu)


. (86)

The integrand is now a smooth function for any ϵmk−q and therefore a standard Gaussian quadrature may be used. In practice, we apply a
double Gauss–Legendre quadrature [10,41], in which the semi-infinite integral is divided into two intervals, [0, ω0] and [ω0,∞), and the
integration in each interval is carried out by standard Gauss–Legendre quadrature. As shown in the next section (see also Ref. [41]), the
integration over frequency can be converged with a rather small number of points when choosing appropriate ω0.

After the matrix elements of the correlation self-energy along the imaginary axis are calculated according to Eq. (86), they are fitted by
a function with Np poles [42]

Σ c
nk(iu) =

Np
p

ap;nk
iu − bp;nk

(87)

where ap;nk and bp;nk are fitting parameters. Eq. (87) is then analytically continued onto the real frequency axis. We call this approach the
multi-pole fitting scheme.

Another way to obtain the correlation self-energies on the real frequency is by the Pade-approximantmethod [43,44] (see Appendix C),
which is also implemented in our code. In general, the two approaches (with Np = 2 in the multi-pole fitting scheme) give very
similar results for sp-semiconductors and insulators. On the other hand, the Pade approach may in some cases lead to unphysical QP
renormalization factors (Eq. (29)) for states far away from the Fermi energy.

4.6. G0W0 with input from LDA + U

In this section, we provide some technical details about the implementation of G0W0 based on the LDA + U [45] single-particle
Hamiltonian. Here LDA + U is used as a synonym to refer to the Hubbard U corrected LDA or GGA in general. In the LDA + U method, the
total energy is not only an explicit functional of Kohn–Sham orbitals but also of the local on-site density matrix nαlmm′ for the orbital l of
atom α (usually the d orbital of transition metal atoms and the f orbital of lanthanides or actinides):

ELDA+U
tot = ELDA

tot [ρ(r)] +1EU
[nαlmm′ ]. (88)

The corresponding KS single-particle equation becomes:
−

1
2
∇

2
+ Vext(r)+ VH(r)+ V LDA

xc (r)

ψnk(r)+


m,m′

vαlmm′

1
fnk

δnαlmm′

δψ∗

nk(r)
= ϵnkψnk(r) (89)

with vαlmm′ ≡ δ1EU/δnαlmm′ . Note that the spin index has been dropped for brevity. Using Eq. (48), the local density matrix corresponding
to the l-th orbital of atom α can be written as [46]

nαlmm′ =


nk

fnk

ζ ,ζ ′

Ank,αζ lmIαlζ ,ζ ′


Ank,αζ ′ lm′

∗
=


nk

fnk

ζ ,ζ ′


ψnk|uαζ lYlm′

 
Iαl
−1
ζ ζ ′


uαlζ ′Ylm|ψnk


(90)

with

Ialζ ζ ′ ≡


∞

0
dr r2 uαζ l(r) uαζ ′ l(r). (91)

The KS equation in the LDA + U framework then reads
−

1
2
∇

2
+ Vext(r)+ VH(r)+ V LDA

xc (r)+ δV̂U

ψnk(r) = ϵnkψnk(r) (92)
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where

δV̂U
=


m,m′

vαlmm′


ζ ζ ′

|uαζ lYlm′⟩

Iαl
−1
ζ ζ ′ ⟨uαlζ ′Ylm|. (93)

Formally, the only difference between LDA-based and LDA + U-based G0W0 is the contribution from Eq. (93),

δVU
nk ≡ ⟨ψnk| δV̂U

|ψnk⟩

=


m,m′

vαlmm′


ζ ,ζ ′


ψnk|uαlζYlm′

 
Iαl
−1
ζ ζ ′


uαlζ ′Ylm|ψnk


=


m,m′

vαlmm′


ζ ,ζ ′

Ank,αζ lm

Iαl

ζ ζ ′


Ank,αζ ′ lm′

∗
. (94)

Therefore, the G0W0 quasi-particle energy based on LDA + U reads:

ϵ
qp
nk = ϵnk + ℜ


⟨ψnk|Σ(ϵ

qp
nk)− V LDA

xc − δVU
|ψnk⟩


. (95)

5. Convergence tests

The advantage of the LAPWmethod is that it does not rely on any shape approximation for the potential and density, and therefore for
ground state calculations it is numerically ‘‘exact’’ as long as the convergence parameters are well controlled. Concerning the evaluation of
the self-energy, the numerical accuracy within the LAPW framework is certainly more problematic. It depends on:

1. the quality of the mixed basis set,
2. the size of the LAPW basis set, as determined by the parameter RGmax,
3. the number of unoccupied states included in the calculation of the correlation term, as determined by the energy cutoff ϵmax
4. the number of k- and q-points used for the Brillouin-zone integration, and
5. the number of frequencies, Nω , in the calculation of the self-energy.

The convergence with respect to these parameters is essential for the reliability of the obtained results. In addition, the precision of the
Kohn–Sham results used as input also requires attention, since they could indirectly affect the G0W0 output. In particular, the accuracy of
the LAPWbasis to represent the Kohn–Shamorbitals is crucial. It ismainly controlled by a quantity, usually termed ‘RKmax’ or ‘RGmax’, which
is the product of the (smallest) MT radius, min RαMT, and the largest G vector of the interstitial planewaves, Gmax. It not only determines
the quality of the ground-state, but also that of the unoccupied orbitals. On the other hand, the capability of the LAPW basis to represent
Kohn–Sham wavefunctions within the MT spheres is limited by its linearization error. The latter is negligible for occupied states, but can
become severe for unoccupied states when the orbitals have more nodes inside the MT sphere. How strongly G0W0 results are affected by
the linearization error of the LAPW basis is still unclear. In this work, we use the ‘‘standard’’ LAPW basis.

In the following, we discuss the convergence of G0W0 results with respect to the various parameters mentioned above using Si as the
example. The main quantity to monitor this convergence is the band gap between Γ and X , which is 1.13 eV with an estimated error of
.0.02 eV when using the following parameters: Q ≡ GMB

max/Gmax = 1.0, lMB
max = 3, RGmax = 8.0, ϵmax = 204 eV, ω0 = 13.6 eV,Nω = 16,

and Nk = 63. Unless otherwise stated, the results discussed in this section are obtained using these parameters, except the parameter
under consideration which is varied.

5.1. Quality of the mixed basis set

The quality of themixed basis, χq
j , is controlled by two parameters as described in Section 4.1: in the interstitial region, it is determined

by the cut-off for the interstitial planewaves,GMB
max. It can be characterized by the quantityQ ≡ GMB

max/Gmax, whereGmax is the corresponding
cut-off of the LAPW basis functions. Within the muffin-tin spheres, the decisive parameter is lMB

max, the maximal angular-momentum
quantum number of the radial functions used to construct the mixed-basis. Fig. 2 shows the convergence of the Si Γ − X band gap with
respect to lMB

max and Q , respectively. For the former (left panel), Q is fixed to 1.0 and for the latter (right panel) lMB
max = 3 is used.

In Si, lMB
max = 2 is enough to ensure an accuracy of ∼0.02 eV. With respect to Q , one would expect that Q ∼ 2.0 is needed to obtain

converged G0W0 results, since the product of two Kohn–Sham wavefunctions contains the contributions of interstitial planewaves with
G values up to 2Gmax. In reality, however, a much smaller Q can be used. In fact, already Q = 0.8 gives reasonably converged band gaps
with an accuracy of ∼0.01 eV. Note, however, that such findings should not be generalized, and convergence tests need to be performed
for every material.

5.2. LAPW basis set size

Asmentioned above, wewill not address the possible error due to the linearization of the basis functions inside theMT spheres. Beyond
this issue,RGmax plays a two-fold role: it determines the size of the LAPWbasis and, therefore, also that of themixed basis. It also determines
themaximumnumber of unoccupied states that can be taken into account in the summation of Eqs. (19) and (22) (see below). To check the
influence of the former, Fig. 3 shows the convergence of the Γ −X gap with respect to RGmax with a fixed energy cutoff for the unoccupied
states ϵmax = 82 eV. We can see that the value converges quite quickly with respect to RGmax. Using RGmax = 7.0 ensures an accuracy of
∼ 0.01 eV.
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Fig. 2. Convergence behavior of the Γ − X band gap of Si with respect to lMB
max (left), the parameter determining the quality of the mixed basis inside the muffin-tin spheres,

and Q (right), the parameter determining the quality of the mixed basis in the interstitial region.

Fig. 3. Left: Convergence of the Γ − X band gap for Si with respect to RGmax . The values are computed with a fixed ϵmax = 82 eV (an energy cutoff corresponding to
RGmax = 5.0) for different RGmax and thus are not fully converged with respect to ϵmax . Right: Convergence with respect to ϵmax . Filled circles represent data obtained with
a fixed RGmax of 10.0, while open symbols represent results obtained with varying RGmax and using all available unoccupied states, i.e., setting ϵmax = ϵPWmax .

5.3. Number of unoccupied states

Wenow study the convergence of theG0W0 band gapwith respect to the number of unoccupied states involved in theG0W0 calculation.
The number of available unoccupied states, ϵPWmax, is determined by the planewave cutoff of the LAPW basis functions. To check the
convergence with respect to the number of unoccupied states, we choose a large RGmax = 10.0 which allows to access a large number of
empty states. As shown in the left panel of Fig. 3, the G0W0 Γ − X band gap of Si increases as a function of ϵmax, and becomes saturated
when ϵmax >∼ 200 eV. For comparison, we also show the results for the case in which RGmax is varied, and all available unoccupied states
are used (ϵmax = ϵPWmax). The two sets of data differ significantly in the regime of small cutoffs, but they naturally converge to the same
value as ϵmax increases.

5.4. Frequency integration

As described in Section 4.5, the semi-infinite integral is performed along the imaginary frequency axis (Eq. (86)) by a double
Gauss–Legendre quadrature scheme, in which the integration region [0,∞) is split into two intervals separated by ω0. The numerical
accuracy is mainly determined by the total number of discrete imaginary frequency points, Nω , but the parameter ω0 can also have
significant influence on the accuracy.

Fig. 4 shows the convergence of the Γ − X band gaps of Si with respect to Nω obtained with different ω0 using the 2-pole fitting
scheme for the analytic continuation. We consider three choices of ω0, namely 1.36, 13.6, and 27.2 eV, which covers a broad energy range
and allows for evaluating the sensitivity of the results. The convergence of the band gap with respect to Nω is poor when ω0 = 1.36 eV.
Choosing ω0 = 13.6 or 27.2 eV, the results obtained with Nω = 16 is already quite close to the fully converged value. In addition, we note
that the band gaps converged with respect to Nω for different ω0 are nearly identical except that the one with ω0 = 1.36 eV differs by
about 0.01 eV from the others.

5.5. Number of k-points

Finally, we test the convergence of the Γ − X gap with respect to the number of k points, Nk, used for BZ integrations. Considering that
G0W0 calculations scale quadratically with Nk, it is highly desirable to use an as small as possible k-point grid. Generally, the number of
k-points needed for a converged LDA calculation may be different from that required for a G0W0 calculation. Since LDA requires much less
computational effort than G0W0, it is a common practice to run the G0W0 calculation using a smaller number of k-points which is based on
awell-converged LDA calculation, performed on a fine k-mesh. This LDA calculation not only provides Kohn–Sham single-particle energies
andwave-functions, but also the exchange–correlation potential, V xc. We find that, in somematerials, the G0W0 gap converges faster with
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Fig. 4. Left: Convergence behavior of the Γ − X gap of Si with respect to the number of frequency points, Nω . Right: Convergence with respect to nk ≡ N1/3
k using different

schemes (see the text in Section 5.5).

respect to Nk when V xc is recalculated with the same k-mesh as used for G0W0 calculations. This may be likely due to error cancellation
between V xc andΣxc, but it is not clear whether this is a general feature of G0W0 calculations.

In the right panel of Fig. 4, we systematically investigate how the Γ − X gap behaves as a function of Nk by comparing the following
three schemes.

• Scheme 1: LDA calculations are performed on a fine 10 × 10 × 10 k-mesh, and V xc obtained with this fine k-mesh is directly used in
the G0W0 calculation.

• Scheme 2: LDA calculations are carried out on a fine 10 × 10 × 10 k-mesh, but V xc is recalculated with the same k-mesh as used for
the G0W0 calculation.

• Scheme 3: The same k-mesh is used for LDA and G0W0 calculations.

Comparing Schemes 1–3, we see that using the same k-grid for Σxc and V xc tends to speed up the convergence with respect to Nk. The
Γ − X gap calculated with a 6 × 6 × 6 mesh differs from that obtained with an 8 × 8 × 8 mesh by less than 0.01 eV in Schemes 2 and 3.
The difference is slightly larger in Scheme 1 (∼0.02 eV).

6. Concluding remarks

In this work we have presented the implementation of an all-electron G0W0 code, FHI-gap, which is based on the LAPW method.
FHI-gap also allows for calculations in combination with the LDA+U approach. This way, it has been used for exploring d and f electron
systems such as transition metal and lanthanide oxides [20,21].

One issue we did not address in this paper are the linearization errors of the LAPW basis and their relevance for G0W0 calculations. In
the standard LAPW basis, the linearization energies are chosen in the respective valence band regime, and local orbitals are introduced
to describe semicore states or to improve the flexibility of the basis in case of large band widths. This procedure has proven to be very
accurate for ground-state calculations. In contrast, GW calculations require the knowledge of all states including highly-lying unoccupied
states, forwhich the standard LAPWbasis is not very accurate. This issuewas first recognized by Friedrich et al. in 2006 [47], who, however,
found that for systems like Si the linearization error for G0W0 calculations accounts for only a small change of the band gap (∼0.03 eV)
and is therefore negligible. The situation may, however, be more severe for other materials, as recently found for ZnO [48], where the
addition of 292 and 186 LO’s at high energies for Zn and O, respectively, increased the G0W0 band gap by nearly 0.5 eV. Such calculations
cannot be carried out with FHI-gap at present, as only one LO per l quantum number can be used in the WIEN2k package. In any case, a
systematic approach to reliably describe unoccupied states up to very high energies in a controllable way is still lacking, and at the same
time the summation over these bands is computationally extremely expensive. In this context, recently proposed numerical techniques
that eliminate unoccupied states in GW calculations appear attractive [49,50]. Such approaches, however, so far rely on the use of the
pseudopotential planewave method. Similar techniques for the all-electron full-potential LAPW framework need to be developed.

Finally, we would like to give an outlook on envisaged extensions of the code. Important developments in the field include (i) more
efficient algorithms and techniques [51,49] that give hope that the G0W0 methodwill be feasible for real materials; (ii) the so-called quasi-
particle self-consistent GW schemes (QSGW) [52–55] that can get rid of the starting-point dependence; (iii) the proposal of combining the
GW methodwith dynamical mean-field theory (DMFT) to treat strong correlations [56,57]. Some of these new features, including different
variants of the QSGW approach, are currently implemented as well as the incorporation of spin–orbit coupling, and the application of the
constrained random-phase approximation [58].

The FHI-gap code will be made available to the WIEN2k users free of charge and can be downloaded from the WIEN2k website [59].
Further information can be obtained from the webpage of the code [60].
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Appendix A. The singularity of the bare Coulomb interaction at the Γ point

The bare Coulomb interaction v(r, r′) ≡ 1/|r−r′| is singular in the reciprocal space at theΓ point (q → 0). This singularity is integrable
but requires special treatment. The divergence of the Coulombmatrix vij (q) as q → 0 can be easily seen by taking a planewave expansion:

vGG′ (q) =
4π

|q + G|2
δGG′ . (A.1)

Evidently, v00 → ∞ as q → 0, since the limit corresponds to the potential generated by a constant, finite charge density, infinitely
extended in space. The advantage of the planewave expansion is that one can clearly separate the divergent terms by writing

vGG′(q → 0) =
vsGG′

q2
+ ṽGG′ (A.2)

with

vsGG′ = 4πδGG′δG0

ṽGG′ =
4π
G2
δGG′(1 − δG0).

(A.3)

The same separation can be used when expanding the bare Coulomb potential in the mixed basis,

vij(q → 0) =
vsij

q2
+ ṽij. (A.4)

The singular term can be obtained from Eq. (A.3) transforming to the mixed basis:

vsij = 4π W i
0(0)W

j∗
0 (0). (A.5)

The calculation of the regular term ṽij is trivial in caseswhen at least one of the basis functions stems from the interstitial region (Eq. (62)
or Eq. (63)). We just need to remove the G = 0 component in the corresponding summation. In the case that both χi and χj live in the MT
region, i.e., χi = γαNLM and χj = γα′N ′L′M ′ , the lattice sum appearing in Eq. (55) diverges for q = 0 (see e.g. Eq. (60)). Since the singularity
only applies to the case L = L′

= 0, we can carry out a planewave expansion for these terms, removing the contribution from G = 0. That
leads for L = L′

= 0 to

ṽij =


G≠0

W i
G(0)

4π
|G|2


W

j
G(0)

∗

. (A.6)

Appendix B. Brillouin zone integration for the self-energy

Calculating the matrix elements of the self-energy (Eqs. (18) and (22)) requires an integration in q over the Brillouin zone. To simplify
the notation, we consider a general function

Σ =
1
Nc

BZ
q
Υ (q) =

Ω

(2π)3


BZ

dq Υ (q) (B.1)

where the integrand Υ (q) in the q → 0 limit can be decomposed as

Υ (q → 0) =
Υ s2

q2
+
Υ s1

q
+ Υ̃ (q) (B.2)

with Υ̃ (q) being the regularized form of Υ (q).
The singularity at the Γ point appearing in Eq. (B.2) is integrable, but a direct numerical integration will converge very slowly.

Following [61], we introduce two auxiliary functions that show similar singularities:

F1(q) =


G

e−β|q+G|

|q + G|

F2(q) =


G

e−β|q+G|
2

|q + G|2
.

(B.3)

One can see that

F1(q → 0) =
1
q

+ F̃1(q)

F2(q → 0) =
1
q2

+ F̃2(q)
(B.4)
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where F̃1(q) and F̃2(q) are regularized forms of F1(q) and F2(q), respectively, obtained by neglecting G = 0 in the summation on the
right-hand side. After some algebra, the integration of Υ (q) over q can be written as

Σ =
1
Nc


q
Υ (q) = Cs1Υ

s1
+ Cs2Υ

s2
+ N−1

c


q
Υ̃ (q) (B.5)

with

Cs1 =
Ω

(2π)2β
− N−1

c


q

F̃1(q)

Cs2 =
Ω

(2π)2


π

β
− N−1

c


q

F̃2(q).
(B.6)

β is a parameter chosen such that the width of the Gaussian is comparable to the Brillouin zone diameter RBZ . In this work, we adopt the
parameter β =


Ω/6π2

1/3 which is obtained by requiring βRBZ = 1 with 4π
3 R3

BZ = (2π)3/Ω . The expressions of Υ s1 and Υ s2 for the
exchange and correlation self-energies can be easily obtained from Eqs. (18), (21), (22) and (A.4).

Since Υ̃ (q) in Eq. (B.5) is a well-behaved function of q in the whole BZ, the integration over q can be carried out by standard techniques
like the special-k-points method [62] or the tetrahedron method [63,64]. The latter is used in our code [19].

Appendix C. The Pade approximant method for analytic continuation

A function f (z), whose values at N discrete points {zn|n = 1 . . .N} are given f (zn) = fn, can be fitted to an N-point Pade approximant

PN(z) =
AN(z)
BN(z)

. (C.1)

The Pade approximant has the feature that it is the ‘‘best’’ approximation of a function by a rational function of given order in the sense
that PN(z) agrees with f (z) at z = 0 up to the N-th order derivative

f (0) = PN(0)

f ′(0) = P ′

N(0)
· · ·

f (N)(0) = P (N)N (0).

(C.2)

AN(z) and BN(z) are complex polynomials of order N/2 and N/2 − 1, respectively, for even N . For odd N , both are of order (N − 1)/2.
In this work we always use even N . Therefore the number of poles that are represented by the N-point Pade approximant is equal to N/2.
Based on Thiele’s reciprocal difference method [43,44], AN(z) and BN(z) can be calculated recursively according to

An(z) = An−1(z)+ (z − zn−1) an An−2(z) (C.3)

Bn(z) = Bn−1(z)+ (z − zn−1) an Bn−2(z) (C.4)

with A0 = 0, A1 = a1, and B0 = B1 = 1. The coefficients an are also calculated recursively by

an = gn(zn) (C.5)
g1(zn) = fn (C.6)

gp(z) =
gp−1(zp−1)− gp−1(z)
(z − zp−1)gp−1(z)

p ≥ 2. (C.7)

Appendix D. Parallelization

G0W0 calculations are both CPU-time andmemory intensive, and therefore parallelization is particularly important. The parallelization
of FHI-gap is based on the message-passing interface (MPI), with the aim to reduce CPU time as well as memory requirements for each
process. The latter becomes extremely relevant for large systems.

As obvious from Eqs. (18) and (22), the calculation of the self-energy includes the summation of independent contributions from
different q vectors, hence suggesting the simplest way of parallelization. This can be realized with hardly any overhead. This procedure
is perfectly suitable for small systems where hundreds of q points are considered. For larger systems, however, with typically more than
ten atoms in the unit cell, usually a small number of q points is needed to obtain converged results. In this case, the q parallelization alone
is not enough to take full advantage of the evermore powerful high-performance computing facilities. We therefore have introduced new
parallelization mechanisms to allow for the use of a large number of processors.

To be more specific, the total number of processes is divided into groups. They are called columns in the code, and their number is
denoted as ncol. Processes in different groups perform calculations for different q points. Processes within a ‘‘column’’ are further divided
into ‘‘rows’’, the number of which is denoted as nrow. Parallelization over the rows is achieved as follows: the construction of M i

nm(k, q)
is parallelized over unoccupied bands (indexed m) as the number of unoccupied bands is usually quite large; for the calculations of
Pij(q, ω), εij(q, ω), andW c

ij (q, ω), the parallelization is performed over frequency points. In terms of CPU time and memory consumption,
the parallelization over columns scales almost linearly, but the memory usage is not reduced. On the other hand, the parallelization
over rows can reduce the memory allocation down to 1/nrow, but the gain in CPU time is less efficient, because a certain amount of
communication is needed, and some quantities have to be recalculated in the different processes.
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Appendix E. Interface with WIEN2k

The FHI-gap code is currently interfaced to WIEN2k by several C-shell scripts, which can be used for preparing the input files needed
for GW calculations (preprocessing) and analyzing the GW results afterwards (post-processing). Here we give a brief description of their
usage. More detailed documents on the compilation and use of FHI-gap can be found in the package together with the source code.

Preprocessing. After a self-consistent field (SCF) calculation using WIEN2k [17], all data files required for the subsequent G0W0
calculation are prepared by the C-shell script gap_init. It creates Kohn–Sham wave-functions and energies on a new k-mesh (usually
smaller than the one used in the SCF calculation), providing energies up to ϵmax. It also generates the master input file for the GW
calculation, case.ingw, which is a free-formatted text file that assigns default values to all important parameters [65]. Note that these
usually work for most cases, but careful convergence tests, as demonstrated in Section 5, should be conducted to obtain reliable results.

A sample case.ingw reads as follows:
Task = "gw" # Option for task
Restart = F # Option for whether restarting from a previous calculation
nspin = 1 # 1 for spin-unpolarized and 2 for spin-polarized calculations
nvel = 8.0 # number of valence electrons
ComplexVector = F # T for systems with complex Kohn-Sham vectors
SymVector = F # whether to use Kohn--Sham eigenvectors in the irreducible Brillouin zone
barcevtol = 0.0 # tolerance to reduce the bare Coulomb matrix eigenvectors for the correlation self-energies

# for sp systems, barcevtol=0.6 is usually quite safe.
emingw = -2.0 # emingw and emaxgw (in Ry) to control the range of bands
emaxgw = 2.0 # for which GW correction are calculated. Only states

# between E_Fermi+emingw and E_Fermi+emaxgw are calculated
%SelfEnergy # options for correlation self-energy

2 | 0 | 1 # npol | iopes | iopac
% # npol: Number of poles

# iopes: 0/1/2/3 - without or with iteration
# iopsac:0/1 - Pade’s approximation / multipole fitting

%FreqGrid # Frequency grid parameters
3 | 16 | 0.42 |0.0 | 0 # iopfreq | nomeg | omegmax | omegmin | nomeg_blk
% # iopfreq= 1 (equally spaced), 2 (Gauss--Laguerre), 3 (double Gauss--Legendre)
%MixBasis # Mixed basis parameters
1.0 | 3 | 1.E-4 # Q, l_max^MB, lamda_max^MB
%

Post-processing: The main results of a G0W0 calculation by running the FHI-gap code are a set of quasi-particle energies on an equally
spaced k-mesh. To calculate densities of states or plot the band structure diagram along high symmetry directions in the BZ, one usually
needs QP energies on a fine k-mesh. Calculating QP energies at an arbitrary k is possible, but computationally expensive. Currently, the
FHI-gap code uses the Fourier interpolation approach [66] to obtain QP energies on k-points that are not included in the original k-mesh.
For that purpose, the C-shell script gap_analy can be used.

More detailed information on the compilation and use of the code can be obtained from the webpage of the FHI-gap code [60].
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