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Structural and electronic properties of solid molecular hydrogen from many-electron theories
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We study the structural and electronic properties of phase III of solid hydrogen using accurate many-electron
theories and compare the results to state-of-the-art experimental findings. The atomic structures of phase III
modeled by C2/c-24 crystals are fully optimized on the level of second-order perturbation theory, demonstrating
that previously employed structures optimized on the level of approximate density functionals exhibit errors in
the H2 bond lengths that cause significant discrepancies in the computed quasiparticle band gaps and vibrational
frequencies compared to experiment. Using these optimized atomic structures, we study the band gap closure
and change in vibrational frequencies as a function of pressure. Our findings are in good agreement with recent
experimental observations and may prove useful in resolving long-standing discrepancies between experimental
estimates of metallization pressures possibly caused by disagreeing pressure calibrations.
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I. INTRODUCTION

The seminal work of Wigner and Huntington, which first
predicted a metallization of hydrogen [1] in 1935 at a pres-
sure of about 25 GPa, has sparked continuous interest in the
pressure-temperature phase diagram of hydrogen. However,
state-of-the-art experiments [2–4] have not been able to con-
clusively detect metallic behavior with the exception of some
recent experimental studies [5–7] that are still under debate
[8,9]. Until today, one of the most reliable experimental esti-
mates for the metallization pressure range is approximately
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425–450 GPa [7]. The lower value was obtained by the
discontinuous pressure evolution in the infrared absorption,
assuming a structural phase transition to the atomic structure,
whereas the higher value was obtained by extrapolation of
the band gap, assuming hydrogen remains in phase III. De-
termining the metallization pressure accurately is extremely
challenging. This is partly reflected by the disagreement of
the measured H2 vibron frequency peaks as a function of the
pressure, which is crucial for pressure calibration in many
experiments [9]. In addition to the electronic structure, ques-
tions concerning the atomic structure are also difficult to
address. Using x-ray scattering to determine the crystal struc-
ture experimentally is hampered by the low scattering cross
section of hydrogen. Depending on pressure and tempera-
ture, hydrogen has been predicted to condense in different
orientationally ordered molecular crystals [10–16] or (liquid)
metallic [1,2,5,17–22] phases.

Accurate theoretical predictions of the equilibrium phase
boundaries and other properties of high-pressure hydrogen
require an appropriate treatment of quantum nuclear and
many-electron correlation effects [23–28], which can be
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achieved only by using state-of-the-art ab initio methods.
Hitherto, most ab initio studies of solid hydrogen have been
based either on density functional theory (DFT) [15,18,29,30]
or quantum Monte Carlo calculations [24–26,31–34]. DFT
employing approximate exchange and correlation (XC) en-
ergy functionals can be applied to compute infrared and
Raman spectra as well as equilibrium phase boundaries,
facilitating a direct comparison between theory and experi-
ment [10–12,16,35–38]. However, different parametrizations
of the XC functional in DFT yield inconsistent predictions
[26,32,39]. Diffusion Monte Carlo (DMC) produces more
reliable pressure temperature phase diagrams [24–26,33,34].
Furthermore, DMC can also be used to compute quasiparticle
gaps, including nuclear quantum effects [40]. Recently, we
showed that coupled cluster singles and doubles (CCSD) the-
ory predicts static lattice enthalpies of solid hydrogen phases
with high accuracy and computational efficiency [41]. CCSD
results for the most stable model phases, including phases
II and III, are in good agreement with those obtained us-
ing diffusion Monte Carlo. However, these studies are based
on structures optimized using approximate XC functionals,
causing uncontrollable errors when comparing computed tran-
sition pressures or band gaps to experiment. Here, we employ
accurate many-electron theories to predict the atomic struc-
ture of crystalline molecular hydrogen phases and related
properties, enabling a more rigorous study of band gaps and
vibrational frequencies.

II. METHODS

We optimize the atomic structure of model phase III us-
ing nuclear gradients calculated on the level of second-order
Møller-Plesset (MP2) perturbation theory and a plane wave
basis set; see the Supplemental Material for implementation
details [42]. We note there are some earlier implementations
of MP2 forces in periodic solids using Gaussian basis set
[43–45]. All periodic calculations have been performed using
the Vienna Ab initio Simulation Package (VASP) [46] in the
framework of the projector augmented wave method [47,48],
interfaced to our coupled cluster code [49] that employs an
automated tensor contraction framework (CTF) [50]. We use
Hartree-Fock orbitals in all post-Hartree-Fock methods [51].
Computational details are discussed in Ref. [42]. Although
MP2 theory can be considered a low-order approximation to
CCSD theory, it predicts lattice constants for a wide range
of solids with higher accuracy than the DFT Perdew-Burke-
Ernzerhof (PBE) functional when compared to experiment
[52]. Due to the many-electron nature of the employed ansatz,
CCSD theory is exact for two-electron systems. The cou-
pling between electron pairs is, however, approximated by
truncating the many-body perturbation expansion in a com-
putationally efficient manner and performing a resummation
to infinite order of only certain contributions.

Phase III is modeled by C2/c-24 crystals [15] initially pre-
dicted by ab initio simulations and random structure searches
[15,24]. The structure is labeled by its symmetry followed by
the number of atoms in the primitive cell. C2/c-24 consists of
layered hydrogen molecules whose bonds lie within the plane
of the layer, forming a distorted hexagonal shape. We note
that previous DMC studies employed structures that have been

optimized using a range of approximate density functionals,
indicating that an appropriate choice is crucial [26]. In this
work we employ supercells containing up to 96 atoms for
the relaxation of the atomic positions. The convergence with
respect to computational parameters such as the number of
virtual orbitals, k meshes for the Hartree-Fock energy contri-
bution, and energy cutoffs for the employed plane wave basis
set have been checked carefully and are summarized in the
Supplemental Material [42].

Beyond the static lattice model, the T -dependent band
gap renormalization of the single-particle excitation energy
due to electron-phonon interactions (EPIs) was also studied,
using a dynamical extension of the static EPI theory originally
proposed by Heine, Allen, and Cardona (HAC) [53,54]. The
quasiparticle approximation was used to correct the DFT-PBE
eigenvalues based on the EPI self-energies. These calculations
are performed using QUANTUM ESPRESSO [55] and YAMBO

[56,57]. More details can be found in the Supplemental Mate-
rial [42] and the reference therein [58]. The excitonic effects
were obtained by solving the Bethe-Salpeter equation, as im-
plemented in VASP. The EPIs and the excitonic effects are
calculated using DFT-PBE optimized primitive cell structure.

III. RESULTS

A. Structural optimization employing MP2 forces

We fully relax the internal degrees of freedom of DFT-
PBE structures by minimizing the atomic forces computed
on the level of MP2 theory while keeping the lattice vec-
tors fixed and maintaining the space group symmetry. The
MP2 structures are published in the Supplemental Material
alongside additional results, demonstrating that further effects
resulting from the relaxation of the lattice vectors can be
disregarded [42]. For the purpose of the following discussion
we will focus on the shortest hydrogen bond length in these
structures, which represents the most striking difference be-
tween MP2 and DFT-PBE results. At a pressure of 250 GPa,
the shortest hydrogen molecule bond length in the DFT-PBE
structures for phase III is 0.75 Å, whereas MP2 theory predicts
0.72 Å. Similar findings apply to the structures at other
pressures. In passing we note that the shortest hydrogen
molecule bond length obtained using the van der Waals den-
sityfunctional (vdW-DF) functional [59] is 0.72 Å, which is
fortuitously close to our MP2 findings and agrees with find-
ings reported in Ref. [26]. However, it is important to assess
the reliability of these optimized structures further by com-
paring to CCSD results. Figure 1 illustrates that the total MP2
energy per atom of phase III at a volume of 1.57 Å3/atom
(corresponding to a DFT-PBE pressure of 250 GPa) is lowered
by about 5 meV/atom during the structural relaxation. The
initial 11 steps of the relaxation were carried out using only
a 72-atom supercell, whereas all further optimization steps
were performed using a 96-atom supercell, indicating that
finite-size effects become negligible. The shortest bond length
is changed by only about 0.01 Å between the 11th step and the
final step. After 14 steps the remaining forces on the atoms are
smaller than 0.05 eV/Å. Figure 1 also depicts that the CCSD
energy is decreased in total by 11 meV/atom during the full
MP2 relaxation trajectory, which is similar to the change in

054111-2



STRUCTURAL AND ELECTRONIC PROPERTIES OF SOLID … PHYSICAL REVIEW B 103, 054111 (2021)

FIG. 1. The energy changes during the structural relaxation as a
function of the optimization steps. This example at the DFT pressure
of 250 GPa shows that the MP2 and CCSD total energies per atom are
lowered in a similar fashion and provides evidence that the optimized
MP2 structures are close to the CCSD structures. The MP2 and
CCSD energies are corrected by finite-size corrections [60] and are
labeled by MP2-FS and CCSD-FS, respectively,

MP2 theory. The latter observation is important because it
demonstrates that MP2 and CCSD equilibrium structures are
expected to deviate only slightly. This justifies the main as-
sumption of the present work which states that MP2 structures
for phase III are very accurate. To further substantiate this
claim, we note that MP2 theory predicts lattice constants for
a wide range of solids with significantly higher accuracy than
DFT-PBE when compared to experiment [52].

B. DFT-PBE band structures

As a first demonstration of the far-reaching consequences
of the structural changes, we discuss their impact on the
quasiparticle band gap of model phase III (C2/c-24). Figure 2
depicts the electronic band structure for phase III at a pressure
of 250 GPa employing the atomic structures optimized using
DFT-PBE and MP2 theory. The Kohn-Sham band structures
are computed using the PBE functional, exhibiting an indi-
rect band gap with the valence band maximum at X and the
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FIG. 2. Electronic band structure of model phase III (C2/c-24)
obtained using DFT-PBE. Black (green) lines correspond to MP2
(DFT-PBE) equilibrium geometries at a pressure of 250 GPa.

FIG. 3. Pressure dependence of the direct and indirect G0W0

band gaps of the ideal C2/c-24 crystal optimized by MP2 forces.

conduction band minimum at L. The direct gap is located at �.
The direct and indirect PBE band gaps for the MP2 structure
are 2.97 and 1.9 eV, respectively. However, due to the reduced
hydrogen bond length, the direct and indirect band gaps are
about 1 eV larger in the MP2 structure than in the DFT-PBE
structure.

C. G0W0 band gaps of the static crystal

We note that this increase in the band gap persists for the
more accurate quasiparticle band gaps computed on the level
of the G0W0 approximation (see Fig. 3). We stress that due to
the strong dependence of the electronic gap on the pressure, an
underestimation of the band gap by 1 eV results in a decrease
in the predicted metallization pressure by more than 50 GPa.
We note that the previously employed vdW-DF structures in
Refs. [26,40] yield band gaps that agree with our findings
obtained using the MP2 structures to within about 0.1 eV.
The direct and indirect PBE band gaps computed using the
vdW-DF structures are 2.88 and 1.74 eV, respectively.

D. Renormalized G0W0 band gaps by
electron-phonon interactions

We now turn to the comparison between computed G0W0

band gaps and experimental findings. As shown in Ref. [40],
the inclusion of zero-point vibrational effects in the quasipar-
ticle gaps is crucial. At 0 K, this effect is termed zero-point
renormalization (ZPR). At finite T s, T -dependent band gap
renormalization also exists, originating from the Fan and
Debye-Waller terms as described in the dynamical HAC the-
ory. More details can be found in Refs. [57,61]. Unfortunately,
seamless inclusion of the electron-phonon coupling contri-
butions to the band gap on the level of MP2 theory would
be computationally too expensive at the moment. Therefore,
we estimate these renormalizations using DFT-PBE phonons
and include them in the G0W0 quasiparticle band gaps [42].
Our calculations yield a ZPR of the direct and indirect
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FIG. 4. Pressure dependence of the direct and indirect G0W0

band gaps including EPI contributions from this work (dashed lines)
and ≈ −2 eV EPI contributions from Ref. [40] (solid lines). The
direct G0W0 band gaps include ≈ −0.12 eV exciton binding energy.
The experimental estimates have been taken from Refs. [4,7,16,40].

gaps of about −1 eV, which is, by coincidence, a magnitude
similar to the band gap increase caused by structural relax-
ation but significantly smaller than the −2 eV ZPR reported
previously [40].

The computed G0W0 gaps with EPIs are depicted in
Fig. 4 for a range of pressures alongside experimental find-
ings [4,7,16,40]. We note that the direct G0W0 gaps include
≈ −0.12 eV exciton binding energy [42] in order to en-
able a direct comparison to the optical measurements from
Refs. [4,7]. Furthermore, we plot the G0W0 gaps with respect
to the CCSD pressures computed from the enthalpy versus
volume curves, enabling an accurate and direct comparison
to experimental findings. Compared to experiments, the di-
rect and indirect quasiparticle band gaps are overestimated
when our EPI values are used. Replacing our EPI contribu-
tion with the estimate by Gorelov et al. (≈ −2 eV) yields
underestimated band gaps compared to experiment. From
the relatively large difference between the EPI contributions
computed in this work and Ref. [40], we conclude that this
contribution is the remaining leading-order error in our study.
However, the experimental metallization pressure of about
450 GPa lies within our theoretical uncertainties. In a recent
work by Monacelli et al. [62], quantum nuclear effects were
included, which showed a reduction of the band gaps by
approximately 3 eV. Their metallization pressure agrees well
with experiment. Their structures, however, are optimized on
the level of DFT using the Becke-Lee-Yang-Parr exchange-
correlation functional. Another study on the band gap that
achieved very good agreement with experiment was carried
out by Dogan et al. [63] using DFT-PBE optimized and static
crystal structures. From the above analysis, we expect that
this good agreement is probably the result of fortuitous er-
ror cancellation due to the two compensating effects: (i) the
underestimation of the band gap by using the DFT-PBE struc-

tures and (ii) not taking into account EPIs which reduce the
band gap.

E. T -dependent direct and indirect band gap renormalizations

The difference in the T -dependent indirect band gap renor-
malizations in Ref. [40] between 200 and 300 K is about
0.2 eV, which is an order of magnitude larger than our estimate
of 0.02 eV (see Fig. 5). The difference in the experimental
indirect band gaps between 100 K [4] and 300 K [16] is about
0.02 eV, which agrees much better with our result. These
discrepancies signal that further careful examinations of the
employed structures in different studies and the treatment of
different contributions are needed.

F. Pressure dependence of H2 vibron frequencies

For a deeper understanding of the comparison with ex-
periments, we also assess the reliability of the experimental
pressure calibration. This is done by analyzing the depen-
dence of the H2 vibron peak frequency as a function of the
pressure. As pointed out in Refs. [7,9,64] and depicted in
Fig. 6, the currently available experimental estimates for the
H2 vibron peak frequency vary significantly at high pressures,
questioning the reliability of experimentally determined pres-
sures. Possible reasons for the experimental uncertainties are
summarized in Ref. [9]. However, theoretical estimates of
the vibron peak frequency with respect to pressure also vary
significantly with respect to the employed XC parametrization
on the level of DFT [7,26]. We have estimated the vibra-
tional frequency for the MP2 structures by computing the
MP2 and CCSD energies as a function of H2 bond lengths
around the equilibrium. Molecular orientations, locations of
the centers of mass, and volumes are fixed while changing
the bond lengths in accordance with Ref. [26]. The change in
the harmonic frequency with respect to the pressure can be
used as a reliable calibration for pressures depicted in Fig. 6.
We find that both the MP2 and CCSD frequencies have a
slope similar to the H2 vibron frequency peak measured by
Loubeyre et al. in Refs. [7,65]. From this we conclude that
the experimental band gaps depicted in Fig. 4 correspond
to pressures that are in good agreement with our most ac-
curate estimates. In passing we note that despite the good
agreement of vdW-DF structures with our MP2 structures,
vdW-DF vibrational frequencies are in better agreement with
experimental results of Refs. [35,64]. However, we argue that
this agreement is most likely fortuitous because both MP2
and the more accurate CCSD vibrational frequencies exhibit
a very similar and steeper slope with respect to pressure.
From the above findings, we conclude that the vibrational fre-
quencies of high-pressure hydrogen phases are very sensitive
to the structural parameters and the corresponding electronic
structure method. This has potential implications for estimates
of the zero-point motion energy contribution to the lattice
enthalpies of accurate ab initio calculations of transition pres-
sures [24]. Having established the good agreement between
our pressure estimates and those reported in Ref. [7], we can
also comment on the observed evidence of a phase transition
at 425 GPa. As predicted by both DMC and CCSD calcu-
lations [24,26,41] at low temperature, phase III (C2/c-24)
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FIG. 5. T -dependent renormalizations due to EPIs on the direct and indirect band gaps of model phase III (C2/c-24) obtained using
DFT-PBE at 200, 250, and 300GPa, calculated using dynamical HAC theory. 100 random q points, 300 electronic bands, and a 4 × 4 × 4 k
grid are used.

transforms into Cmca-12 at this pressure. However, these
calculations were performed using DFT optimized structures.
We have investigated the lowering of static lattice enthalpies
resulting from MP2 lattice relaxations for both structures at a
selected volume corresponding to a DFT pressure of 450 GPa,
finding that changes to the previously calculated transition
pressures are negligible. This is surprising given the relatively
large changes in the H2 bond lengths.

IV. CONCLUSIONS

Our work demonstrated the strengths and weaknesses of
widely used approximate DFT methods for simulating high-
pressure phases of hydrogen by comparing them to more

FIG. 6. Experimentally measured and theoretically calculated H2

vibron peak frequencies as a function of pressure. The approximate
vdW-DF (taken from the Supplemental Material of Ref. [26]), MP2,
and CCSD harmonic frequencies are shown by the pink, blue, and
green solid lines, respectively. The brown solid line shows the ex-
perimentally measured relation between the H2 vibron frequencies
and pressures from Silvera and Dias [64] and Zha [35]. Another two
experimental data lines are from Loubeyre et al. from 2020 [7] (red)
and from 2017 [65] (purple).

accurate results obtained using many-electron methods in-
cluding coupled cluster theory. Although approximate density
functional theory is a computationally efficient tool for per-
forming random structure searches [15], further structural
optimization is required to achieve good agreement of band
gaps and vibrational frequencies with experimental find-
ings in solid hydrogen. Here, we demonstrated that periodic
many-electron perturbation theory calculations using plane
wave basis sets have become increasingly efficient in pre-
vious years [41,60], making such optimizations feasible for
systems with an increasing number of atoms. Our findings
show that compared to MP2 theory, DFT-PBE structures
exhibit too large hydrogen bond lengths, causing too small
band gaps. Although vdW-DF calculations predict structures
that are closer to MP2 theory, vibrational frequencies that
agree with experiment for a wide range of pressures can
be obtained only on the level of CCSD. Furthermore, we
have demonstrated that the remaining leading-order error
of ab initio band gaps in solid hydrogen crystals is likely
to originate from approximations used to estimate the EPI
contributions. Nevertheless, it is worth pointing out that T -
dependent fundamental band gap renormalization based on
DFT-PBE structure is in better agreement with the experimen-
tal data. Combining accurate benchmark results with hybrid
or nonlocal XC functionals using adjustable parameters could
be useful for materials modeling in this case. Alternatively,
machine learning from MP2 forces or even more accurate
ab initio data could be used to produce accurate potential
energy surfaces and corresponding vibrational entropy con-
tributions. Future work will focus on a seamless integration
of electron-phonon interaction on the level of many-electron
theories to further improve the accuracy of such ab initio
simulations.
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