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We present a full density-functional theory-based implementation of the stochastic path-integral approach
proposed by Liu et al. [H. Liu, Y. Yuan, D. Liu, X.-Z. Li, and J. Shi, Phys. Rev. Research 2, 013340 (2020)]
for estimating the superconducting transition temperature (Tc) of a liquid. The implementation is based on the
all-electron projector augmented-wave (PAW) method. We generalize Liu et al.’s formalism to accommodate
the pseudodescription of electron states in the PAW method. A formula for constructing the overlap operator
of the PAW method is proposed to eliminate errors due to the incompleteness of a pseudobasis set. We apply
the implementation to estimate Tc’s of metallic hydrogen liquids. It confirms Liu et al.’s prediction that metallic
hydrogen could form a superconducting liquid.
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I. INTRODUCTION

Ever since the discovery of the superconductivity by K.
Onnes in 1911, the search for materials with high super-
conducting transition temperatures (Tc’s) has been a constant
pursuit. The recent discovery of a new family of high-Tc su-
perconductors in hydrides under high pressure shows the great
promise of first-principles calculations in guiding the search
[1,2]. Based on the celebrated Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity, it was long predicted that
metallic hydrogen or hydrogen-rich materials could exhibit
high Tc’s as light hydrogen atoms provide both a high Debye
frequency of phonons and a strong electron-phonon cou-
pling (EPC) [3–6]. By using state-of-the-art first-principles
approaches based on the density-functional theory (DFT), it
is now possible to conduct an extensive search in various
hydrides, and predict their structures and Tc’s [1,2,7–9].

In spite of the tremendous success, the first-principles
prediction of Tc for compounds like hydrides is tricky. The
widely adopted algorithm is based on the Eliashberg theory
which relates Tc to quantities calculable by DFT such as
the band structure of electrons and the matrix elements of
EPC [10,11]. The theory is built on the assumption that the vi-
bration amplitudes of atoms in a solid are small. It thus adopts
the harmonic approximation for describing atom vibrations
and a perturbative approach for determining EPC effects. In
hydrides, however, the assumption likely breaks down. Light
hydrogen atoms tend to have large vibration amplitudes, and,
therefore, their vibrations are subject to anharmonicity [12].
Moreover, hydrogen atoms can tunnel between lattice sites
and could even form a superionic phase in which they become
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delocalized and diffuse in a whole lattice [13]. In the mother
compound of metallic hydrides, i.e., metallic hydrogen, quan-
tum fluctuations induced by the tunneling is so strong that its
melting point is predicted to be suppressed below room tem-
perature [14,15]. The applicability of the Eliashberg theory in
these systems is questionable.

To date, most of the efforts addressing the quantum tun-
neling and anharmonic effects in superconductors are based
on the approach of the stochastic self-consistent harmonic
approximation (SSCHA) [16] which treats an anharmonic
system as an effective harmonic one with self-consistently
determined phonon modes. Tc can then be estimated by ap-
plying the standard algorithm for a harmonic system. SSCHA
calculations show that the anharmonicity and quantum fluc-
tuations could yield different predictions of crystal structures
and Tc’s [12,17]. While the approach is effective and efficient,
it relies on a cascade of approximations which could become
uncontrolled. In particular, when a system enters a liquid or
superionic phase, the underlying assumption that the system
can be approximated as a harmonic solid obviously breaks
down.

Recently, Liu et al. proposed a stochastic path-integral
approach of determining Tc for general systems including
liquids [18]. The core of the approach is a set of rigorous rela-
tions through which an effective pairing interaction between
electrons can be inferred from the fluctuations of electron-
ion-scattering T matrices. The fluctuations of the T matrices
can be estimated from a stochastic sampling of ion positions
generated by a path-integral molecular dynamics (PIMD) sim-
ulation [19]. Furthermore, it is shown that the equations for
determining Tc in the Eliashberg theory, i.e., the linearized
Eliashberg equations, can be reestablished rigorously in the
new context. As a result, with the effective pairing interaction,
Tc can be determined in the exactly same manner as in the
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conventional Eliashberg approach. The approach is based on
a rigorous theory and makes no assumption on the nature
of atom motion. It should, therefore, apply equally well for
solids or liquids with or without anharmonicity and quantum
fluctuations.

Liu et al. present an implementation of the approach for
metallic hydrogen liquids in Ref. [18]. They predict that
metallic hydrogen would form a superconducting liquid with
Tc well above its melting temperature. In the implemen-
tation, hydrogen atom positions are sampled by using the
first-principles PIMD method. However, ionic fields, i.e., the
interaction potentials between hydrogen ions and electrons,
are approximated as a bare Coulomb potential screened by
a dielectric function. Such a linear screening approximation
(LSA) should be adequate for metallic hydrogen because
hydrogen ions, i.e., protons, are point particles without inner-
core electrons. For more general systems involving other atom
species as in the case of hydrides, however, the approximation
is obviously inadequate. The deficiency limits the applicabil-
ity of the implementation to metallic hydrogen only.

In this paper, we develop a full DFT-based implementa-
tion of the stochastic path-integral approach for determining
Tc. We base our implementation on the Vienna Ab-initio
Simulation Package (VASP) [20,21] and determine ionic
fields by employing the projector augmented-wave (PAW)
method [22,23]. In the method, the states of valance electrons
are described by pseudo (PS)-wave functions and the all-
electron (AE) wave functions, i.e., the true wave functions of
electrons are related to PS-wave functions through a transfor-
mation that depends on the positions of ions. It thus introduces
complexities in directly applying Liu et al.’s formalism. We
solve the issue by generalizing the formalism and accommo-
dating it to the PS description. The generalized formalism
enables our full DFT-based implementation. As a test, we ap-
ply the implementation to metallic hydrogen liquids. It yields
results close to Liu et al.’s results, confirming the prediction
that metallic hydrogen could form a superconducting liquid.

The remainder of the paper is organized as follows. In
Sec. II, we outline the formalism and calculation procedure
of the stochastic path-integral approach proposed by Liu et al.
and identify main approximations in their implementation. In
Sec. III, we generalize and implement Liu et al.’s formalism to
accommodate the PAW method. A number of issues relevant
to the implementation are also addressed. In particular, a for-
mula for constructing the overlap operator in the PAW method
is proposed to eliminate errors due to the incompleteness of
the PS basis set. In Sec. IV B, we apply the implementation
to metallic hydrogen liquids and compare results with Liu
et al.’s results. The convergency of the calculation is also
tested. Finally, we summarize our results in Sec. V.

II. STOCHASTIC PATH-INTEGRAL APPROACH
OF DETERMINING Tc

In this section, we outline the formalism of the stochastic
path-integral approach of determining Tc proposed by Liu
et al. and discuss approximations involved in implementing
the approach.

A. Formalism

In the conventional Eliashberg theory, Tc is determined by
solving a set of linearized Eliashberg equations. Liu et al.
show rigorously that the same set of equations still hold for
liquids and general systems, provided that relevant parameters
are properly determined. The set of the linearized Eliashberg
equations reads

ρ�n =
∑

n′

[
λ(n′ − n) − μ� − h̄β

π
|ω̃(n)|δnn′

]
�n′ , (1)

ω̃(n) = π

h̄β

(
2n + 1 + λ(0) + 2

n∑
m=1

λ(m)

)
, n � 0 (2)

and |ω̃(−n)| = |ω̃(n − 1)|, where n and n′ are integers in-
dexing the Matsubara frequencies of fermions ωn = (2n +
1)π/h̄β, β ≡ 1/kBT and T is the temperature; {λ(m), m ∈ Z}
is a set of interaction parameters characterizing the effective
pairing interaction, and μ∗ is the empirical Morel-Anderson
pseudopotential introduced to take account of the exchange-
correlation effect of electrons [24]. Solving Eq. (1) yields a
set of eigenvalues ρ and eigenvectors �n. For normal states,
all eigenvalues are negative. The emergence of a nonnegative
eigenvalue indicates that the system enters into the super-
conducting state. One can thus estimate Tc by solving the
equations for a number of temperatures to see when the max-
imal eigenvalue changes sign. We note that �n here is not
related to the physical gap.

Two comments are in order. First, in calculations for solids
using the standard approach (see, e.g., Ref. [6]), it is common
to use the empirical McMillan formula and estimate Tc from
a small number of parameters evaluated at zero temperature
including the mass enhancement factor λ ≡ λ(0), an aver-
age phonon frequency, and μ∗. It simplifies the calculations.
Unfortunately, such an approach does not work well for liq-
uids because (a) unlike harmonic solids, λ and the average
phonon frequency of a liquid are temperature dependent; (b)
the empirical formulas are tuned for solids and do not fit well
with liquids which have qualitatively different density spec-
tral functions due to the presence of low-frequency diffusive
modes [25,26]. Second, the choice of parameter μ∗ is empir-
ical. For metallic hydrogen systems, we use μ∗ ≈ 0.089 as
suggested in Ref. [6]. The empirical parameter introduces an
uncertainty in predicting Tc. Ideally, one should base calcula-
tions on the DFT for superconductors [27–29], which provides
a rigorous framework for treating exchange-correlation effects
in superconductors. This is not yet implemented in our current
calculation.

To apply the Eliashberg equations, the interaction parame-
ters λ(m) are the central quantities to be determined. They are
related to the effective pairing interaction W by

λ(n − n′) = −
∑

k′
W (ωn − ωn′ , k − k′)δ(ε̃k′ − εF ), (3)

where W (ωn − ωn′ , k − k′) denotes the matrix element of
the effective pairing interaction, which is a function of the
quasi-wave-vector transfer k − k′ and the frequency transfer
ωn − ωn′ , ε̃k′ is the renormalized quasielectron dispersion, and
εF is the Fermi energy. To apply the formula, it is necessary
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to determine the effective pairing interaction as well as the
renormalized quasielectron dispersion.

To determine these quantities in a liquid, Liu et al. propose
a stochastic path-integral approach. It is based on the classical
isomorphism [30], i.e., mapping quantum ions to classical
ring polymers by applying the imaginary-time path-integral
formalism [31]. The spatial configuration of the classical en-
semble of ring polymers is specified by a set of τ -dependent
coordinates {Ra(τ )}, where τ ∈ [0, h̄β ) is the imaginary time
or interpreted as a variable to parametrize the rings. In a PIMD
simulation, the isomorphic ensemble is simulated by using
the classical molecular dynamics. It provides a statistical sam-
pling of the spatial configurations of the ring polymers.

Quantities related to electrons can be evaluated in the iso-
morphic ensemble. Electrons in the ensemble experience a
τ -dependent Kohn-Sham (KS) potential VKS(τ ) which is self-
consistently determined by the ion configuration {Ra(τ )} at
the specific imaginary-time τ . As a result, the single-particle
Green’s function of electrons with respect to a given configu-
ration of ring polymers, in the context of the KS theory, can
be determined by[

− ∂

∂τ
− Ĥ (τ ) − εF Î

h̄

]
Ĝ(τ, τ ′) = δ(τ − τ ′)Î, (4)

where we write the equation in an operator form, Ĥ (τ ) ≡
K̂ + V̂KS(τ ) with K̂ being the operators of the kinetic energy.
The Green’s function is not a physical Green’s function for
electrons in a liquid. To get the physical one, we need to
further conduct an ensemble average:

Gphy. ≡ Ḡ(τ − τ ′) = 〈G(τ, τ ′)〉C, (5)

where 〈. . . 〉C denotes the average over the ring-polymer con-
figurations. The averaged (physical) Green’s function Ḡ(τ −
τ ′) defines the dispersion and lifetime of a quasielectron
renormalized by the fluctuating ionic field. The quasielectron
dispersion ε̃k′ required by Eq. (3) can then be inferred from it.

For a given spatial configuration of ring polymers, we can
determine the electron-ion-scattering T matrix. The T matrix
is related to the Green’s function according to the Lippmann-
Schwinger equation

T̂ = V̂ + 1

h̄
V̂ ˆ̄GT̂ , (6)

where V̂ = V̂KS(τ ) − ˆ̄ is the effective scattering potential for
electrons, and ˆ̄ is the self-energy inferred from ˆ̄G.

Liu et al. establish a rigorous relation between the effective
pairing interaction and the T matrices. One first determines
the pair-scattering amplitude �, i.e., the fluctuation of the T
matrices:

�11′ = −β〈|T11′ |2〉C, (7)

where T11′ denotes the matrix element of the T matrix, and we
adopt a short-hand notation by using numbers to represent the
states of electrons: 1 ≡ (k, ωn), 1̄ ≡ (−k,−ωn) and similarly
for 1′ and 1̄′. Then, the effective pairing interaction can be
obtained by solving the Bethe-Salpeter equation:

W11′ = �11′ + 1

h̄2β

∑
2

�12|Ḡ2|2W21′ . (8)

The obtained W11′ then enters into Eq. (3), in which we express
it explicitly as W11′ ≡ W (ωn − ωn′ , k − k′). We note that in
general W11′ depends on 1 and 1′ independently. For EPC, it is
a good approximation to regard W11′ as a function of ωn − ωn′

as long as h̄|ωn(n′ )| is much smaller than the Fermi energy.
Moreover, since liquids are isotropic and only matrix elements
with both k and k′ residing on the Fermi surface are needed for
evaluating Eq. (3), W11′ can be written as a function of k − k′.

B. Approximations

To develop an algorithm for estimating Tc based on the the
rigorous formalism shown in the last subsection, Liu et al.
employ a number of approximations. In this subsection, we
will discuss these approximations and identify the one to be
improved.

The most important approximation which makes an im-
plementation possible is the quasistatic approximation. It is
necessary because solving Eqs. (4) and (22) exactly is deemed
to be impossible in practice as it requires a time resolution
∼h̄/εF or a corresponding large cutoff frequency ∼εF /h̄.
Fortunately, one can exploit the fact that ions move much
slower than electrons. It means that the ionic field only has
significant components for frequencies νm ≡ 2πm/h̄β � ωph,
where ωph is a characteristic frequency of phonons. In this
case, the equation can be solved by applying the quasistatic
approximation. This is to choose a large n such that ωn 
 ωph

and to solve Eq. (4) as if Ĥ (τ ) is time independent:

Ĝn(τ ) = h̄[(ih̄ωn + εF )Î − Ĥ (τ )]−1, (9)

The ensemble average ˆ̄Gn = 〈Ĝn(τ )〉C will be independent of
τ and a good approximation for the Fourier transform of
Ḡ(τ − τ ′) at the frequency ωn [18]. The T matrix can then be
calculated in the time domain in the same manner and Fourier
transformed back to the frequency domain; see Sec. III B for
details. For determining the effective pairing potential, we
only need to solve for a specific n with ωph � ωn � εF /h̄.
This is because W11′ ≡ W (ωn − ωn′ , k − k′) is assumed to be
a function of ωn − ω′

n ≡ νm.
More approximations are involved in PIMD simulations.

It is necessary to simulate a system in a finite size supercell
and discretize the imaginary time to a finite number of beads.
In Ref. [18] it is found that the discretization truncates the
high-frequency components of the density correlation func-
tion of ions and the effective pairing interaction. It results in an
incorrect asymptotic behavior of λ(m) at large m. To address
the issue, Liu et al. develop an oversampling scheme to inter-
polate the density correlation function in the temporal domain
and obtain an oversampled density correlation function; see
Ref. [18] for details. To get the effective pairing interaction,
they make use of the empirical relation:

W (νm, q) = |M(νm, q)|2χ (νm, q), (10)

where χ (νm, q) is the density correlation function of ions,
and M(νm, q) could be regarded as the EPC matrix element
as defined in the Eliashberg theory. It is found numerically
that the relation holds well for metallic hydrogen liquids,
and |M(νm, q)|2 can be obtained from a linear regression. By
substituting the density correlation function in Eq. (10) with
the oversampled one, one can obtain an oversampled effective
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pairing interaction. It is found that λ(m) determined from
the oversampled effective pairing interaction has a correct
asymptotic behavior at large m.

Last, Liu et al. adopt the LSA for evaluating the ionic
field. This is to approximate the Fourier transform of the ionic
potential as

Vion(q, τ ) = e2

εet (q)q2
ρi(q, τ ), (11)

where ρi(q, τ ) = ∑
a exp[−iq · Ra(τ )] is the Fourier trans-

form of the density distribution of ions, and εet (q) is the
static electron-test charge dielectric function [32] which has
a form similar to that of the random-phase approximation
but with a local-field correction factor determined by Ichi-
maru and Utsumi [33]. It is derived from the jellium model
which models ions as a uniform positive charge background,
an approximation which obviously breaks down in core re-
gions close to ions. While it is reasonable to expect that such
an approximation could work well for metallic hydrogen in
which ions (protons) have small core volumes and electrons
are shared by all ions, it becomes problematic when other
atoms are involved and bonding between atoms is covalent
in nature.

Among the three approximations, the LSA is the one that
severely limits the applicability of Liu et al.’s implementation
for systems other than metallic hydrogen. This will be the
focus of this paper aiming to improve the implementation. The
effect of the finite simulation supercell and the finite number
of beads should be assessed to make sure that calculations
converge. This will also be tested. Finally, it is the quasistatic
approximation which makes an implementation feasible for
EPC. The approximation is valid because phonons have an
energy scale much smaller than that of electrons, a feature
unique to conventional EPC superconductors.

III. FORMALISM FOR THE PAW METHOD

In this section, we develop formalism for a full DFT-based
implementation. To balance speed and accuracy, we base our
implementation on the PAW method [22,23]. As a pseudopo-
tential method, the PAW method is efficient. Meanwhile, one
can obtain AE wave functions from PS wave functions by
applying a transformation. The latter is particularly useful for
us since the formalism presented in Sec. II is established in an
AE basis. To facilitate an implementation based on the PAW
method, we need formulas of determining the AE Green’s
functions and the T matrices by using quantities defined in
the PS basis.

In Sec. III A, we first briefly review the PAW method and
outline its formalism. With the preparation, we derive for-
mulas for determining the AE Green’s functions and the T
matrices by using the PAW method in Sec. III B. In Sec. III C,
we discuss the evaluations of quantities involved in the for-
mulas, including the transformation matrix and the overlap
matrix.

A. PAW method

In the PAW method, electrons are described by PS wave
functions. A transformation operator is introduced to map a

PS wave-function �̃ to an AE wave-function �:

� = T̂ �̃ ≡ �̃ +
∑

a

T̂ a|�̃〉, (12)

where T̂ a is an operator transforming the core state of the ion a
from the PS space to the AE space and is nonzero only within
an augmentation sphere surrounding the ion. The radius of
the sphere is chosen such that there is no overlap between
spheres associated with different ions. Inside a sphere, the
wave functions are expanded in the basis of partial waves:

T̂ a|�̃〉 = |�a〉 − |�̃a〉 =
∑

i

(∣∣φa
i

〉 − ∣∣φ̃a
i

〉)〈
p̃a

i

∣∣�̃〉
, (13)

where i indexes the partial-wave states with angular-
momentum quantum numbers (limi ) and at a given ref-
erence energy εi. The AE partial-wave-functions 〈r|φa

i 〉 ≡
φa

liεi
(r)Ylimi (r̂) at the radial coordinate r and along the direction

r̂ are obtained by solving a spherical AE Schrodinger equa-
tion at the reference energy in the presence of an ion at the
center. The corresponding PS partial-wave-functions 〈r|φ̃a

i 〉
are chosen such that they are smooth and coincide with the
AE partial-wave functions outside the sphere; 〈p̃a

i | are a set of
projectors that are biorthogonal to the PS partial-wave states:〈

p̃a
j

∣∣φ̃a
i

〉 = δi, j . (14)

With a complete set of the basis, the closure relation in each
sphere can be written as:∑

i

∣∣φ̃a
i

〉〈
p̃a

i

∣∣ = Îa. (15)

In the PS basis, the KS equation is transformed to

ˆ̃H�̃n = εnŜ�̃n, (16a)

ˆ̃H = T̂ †Ĥ T̂ , (16b)

Ŝ = T̂ †T̂ , (16c)

where Ĥ and ˆ̃H denote the Hamiltonians in the AE and PS
basis, respectively. This is a generalized eigenvalue problem,
and the orthogonality condition between PS eigenwave func-
tions becomes

〈�m|�n〉 = 〈�̃m|Ŝ|�̃n〉 = δm,n. (17)

We note that in DFT calculations based on the PAW method,
the PS Hamiltonian is directly derived from a total-energy
functional expressed in terms of the PS wave functions. It is
not necessary to construct the AE Hamiltonian first and then
transform it to the PS Hamiltonian by using Eq. (16b).

B. AE Green’s function and T -matrix

With the preparation, we now proceed to derive formulas
for determining the AE Green’s function and the T matrix by
using the PAW method.

We seek for an expression of the Green’s function appropri-
ate for the PAW method. Under the quasistatic approximation,
the AE Green’s function is determined by Eq. (9). However,
it depends on the AE Hamiltonian Ĥ (τ ). We can transform it
to a form that only depends on quantities in the PS basis. To
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see that, we start from the spectral representation of a general
Green’s function Ĝ(ε) = h̄(εÎ − Ĥ )−1:

Ĝ(ε) = h̄
∑

n

|�n〉〈�n|
ε − εn

= T̂

[
h̄

∑
n

|�̃n〉〈�̃n|
ε − εn

]
T̂ †, (18)

where |�n〉 and |�̃n〉 are the AE and PS eigenwave functions,
respectively, and εn is the corresponding eigenenergy.

We can convert the expression to a more convenient form.
By using the orthonormality condition Eq. (17), it is easy to
verify the closure relation∑

n

Ŝ|�̃n〉〈�̃n| = Î. (19)

We then have

(εŜ − ˆ̃H )−1 =
∑

n

(εŜ − ˆ̃H )−1Ŝ|�̃n〉〈�̃n|

=
∑

n

|�̃n〉〈�̃n|
ε − εn

, (20)

where we make use of the eigen equation Eq. (16a). By sub-
stituting the equality into Eq. (18) and setting ε = ih̄ωn + εF ,
we obtain the formula of determining the AE Green’s function
in the PAW method:

Ĝn(τ ) = h̄T̂ (τ )[(ih̄ωn + εF )Ŝ(τ ) − ˆ̃H (τ )]−1T̂ †(τ ). (21)

We note that ˆ̃H , Ŝ, and T̂ all depend on the configuration of
ions and are, therefore, time dependent.

With the Green’s function, the scattering T matrix can
be determined. To avoid solving the Lippmann-Schwinger
equation in the AE space, we apply an identity

T̂n(τ ) = h̄ ˆ̄G−1
n Ĝ(τ ) ˆ̄G−1

n − h̄ ˆ̄G−1
n (22)

to calculate the T matrix in time domain. It is easy to prove
that the T matrix calculated in this way satisfies Eq. (6). We
note that in a liquid, because of the spatial translation symme-
try, the average Green’s function is diagonal in the plane-wave
basis. As a result, the matrix inverse and multiplication can be
carried out in a truncated Hilbert space spanned by the basis
without introducing errors.

The matrix elements of T matrix in the frequency domain
can then be determined by applying the Fourier transform:

T̂ωn+νm,ωn ≈ 1

h̄β

∫ h̄β

0
dτ T̂n(τ )eiνmτ . (23)

The matrix elements are all that are needed for evaluating the
pair-scattering amplitude and the effective pairing interaction
(see Sec. II A). We note that for the purpose only, the matrix
elements with wave vectors close to the Fermi surface are
needed. Therefore, a large energy cutoff, which is required
for recovering the AE wave functions from the PS wave func-
tions, is not needed for our calculation.

C. Transformation and overlap matrices

To apply the formulas derived in the last subsection, it is
necessary to determine the transformation operator T̂ and the
overlap matrix Ŝ.

The transformation operator transforms a PS state to an AE
state. From Eq. (12) and Eq. (13), the operator is

T̂ = Î +
∑

j,a

′(∣∣φa
j

〉 − ∣∣φ̃a
j

〉)〈
p̃a

j

∣∣, (24)

where the summation is over ions and partial waves, with the
prime indicating explicitly that the summation is always trun-
cated to a small number of partial waves in real calculations.
For liquids, the basis states in both the AE space and the PS
space are the plane waves. A matrix element in the plane-wave
basis is

〈ψk|T̂ |ψ̃k′ 〉 = δkk′ +
∑
i,a

′(〈
ψk

∣∣φa
i

〉 − 〈
ψk

∣∣φ̃a
i

〉)〈
p̃a

i

∣∣ψ̃k′
〉
, (25)

where |ψk〉 and |ψ̃k′ 〉 are the plane waves in the AE and PS
space, respectively. The overlap matrix element between a
plane wave and a partial wave can be evaluated by

〈ψk|φa
i 〉 = 4π√

V
e−ik·RaYlimi (k̂)

∫ rc

0
r2dr(−i)li jli (kr)φa

li,mi
(r),

(26)

and similarly for other matrix elements, where Ylm denotes the
spherical harmonics, jl (kr) is the spherical Bessel function,
rc denotes the cutoff radius of the augmentation sphere in
defining T̂ a, and Ra is the position of the ion a.

The overlap matrix Ŝ = T̂ †T̂ can also be determined by
using the partial waves. From Eq. (24), we have

Ŝ = −Î + T̂ + T̂ †

+
∑
i j,a

′∣∣ p̃a
i

〉〈
φa

i − φ̃a
i | φa

j − φ̃a
j

〉〈
p̃a

j

∣∣, (27)

where we assume that augmentation spheres associating with
different ions do not overlap. We can rewrite it as

Ŝ = Ŝ′ + (T̂ − T̂ ′ + H.c.), (28)

where

Ŝ′ = Î +
∑
i j,a

′∣∣ p̃a
i

〉(〈
φa

i

∣∣φa
j

〉 − 〈
φ̃a

i

∣∣φ̃a
j

〉)〈
p̃a

j

∣∣, (29)

T̂ ′ = Î +
∑
i j,a

′∣∣ p̃a
j

〉(〈
φ̃a

j

∣∣φa
i

〉 − 〈
φ̃a

j

∣∣φ̃a
i

〉)〈
p̃a

i

∣∣. (30)

We note that Ŝ′ is the form commonly adopted in the literature.
Actually, by using the closure relation Eq. (15), it is easy to see
that T̂ ′ is equal to T̂ , and therefore Ŝ = Ŝ′ if the summation is
over a complete set of partial waves. However, since real cal-
culations always use just a small set of partial waves instead
of a complete set, the correction due to T̂ − T̂ ′ could be non-
negligible. For the determination of the AE Green’s function
and the T matrix, it is important to maintain the consistency
between T̂ and Ŝ since they both appear in Eq. (21). For this
reason, we use Eq. (28) instead of Eq. (29) for calculating the
overlap matrix.
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FIG. 1. Flowchart for calculating Green’s function and the T
matrix. It substitutes the corresponding part of the workflow shown
in Fig. 1 of Ref. [18].

IV. IMPLEMENTATION AND RESULTS

A. Implementation

We employ the GPU version of VASP [34,35] for cal-
culating electron structures. The radius of the augmentation
spheres is set to 0.52 Å, which may result in overlaps of
the spheres in some ionic configurations but saves computa-
tion time. We test a smaller radius of 0.43 Å and find that
differences in calculation results are negligible. The Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [36]
is used in all calculations. A Monkhorst-Pack k-point mesh of
spacing not larger than 2π × 0.05 Å−1 is used to sample the
Brillouin zone, and an energy cutoff of 600 eV is employed to

expand the wave functions, yielding a convergence in energy
better than ∼2 meV/atom.

To determine the Green’s function and the scattering T
matrix by using Eqs. (21, 22), we need to obtain the pseudo-
Hamiltonian ˆ̃H , the transformation matrix T̂ , and the overlap
matrix Ŝ from the electron structure calculations. Since VASP
does not calculate or output these quantities directly, we mod-
ify it to output intermediate quantities including the local
part of the effective KS potential ṽloc, the coefficients of the
nonlocal part of the effective KS potential (ṽ′)a

i j , as well as
the projector matrix elements 〈ψ̃k| p̃a

i 〉. With them, the matrix

elements 〈ψ̃k| ˆ̃H |ψ̃k′ 〉 of the pseudo-Hamiltonian can be deter-
mined by using the definition

ˆ̃H = K̂ + ṽloc +
∑
i j,a

∣∣ p̃a
i

〉
(ṽ′)a

i j

〈
p̃a

j

∣∣. (31)

The matrix elements of the transformation operators T̂ , T̂ ′
and the overlap matrix Ŝ′ can also be determined by apply-
ing Eq. (24), Eq. (30), and Eq. (29), respectively. It is then
straightforward to determine Ŝ by applying Eq. (28).

We can then proceed to carry out the analysis outlined
in Sec. II by following the procedure detailed in Ref. [18].
Figure 1 shows the flowchart of our implementation.

B. Results

To test our first-principles implementation based on the
PAW method, we apply it to metallic hydrogen liquids. The
ion configurations from the constant-volume PIMD simula-
tions of 200 hydrogen atoms in Ref. [18] are reused in the
current study. In this subsection, we summarize our calcula-
tion results.

Estimated Tc’s as well as relevant parameters of metallic
hydrogen liquids under pressures from 0.5 to 1.5 TPa are

TABLE I. Mass enhancement factor λ ≡ λ(0), average phonon frequency ω̄2 (in meV), and the maximal eigenvalue ρm of the linearized
Eliashberg equations for different pressures P (in TPa) and temperatures T (in K), determined by the standard first-principles approach
(PAW method) and the LSA.a The transition temperature Tc, i.e., the temperature at which ρm becomes zero, is estimated based on a linear
interpolation of ρm between the two temperatures. Numerical uncertainties of the quantities are indicated in parentheses.

rs 1.226 1.197 1.17 1.149 1.113 1.049
P 0.5 0.6 0.7 0.8 1.0 1.5

350K λ 10.2(15) 9.0(10) 8.5(10) 7.5(9) 6.3(8) 5.2(5)
ω2 102.1(10) 110.9(10) 112.2(15) 124.6(7) 134.6(3) 164.1(30)
ρm 0.37(12) 0.36(11) 0.32(10) 0.31(9) 0.32(11) 0.26(9)

PAW method 450K λ 8.2(16) 7.7(10) 7.1(8) 6.3(10) 5.5(6) 4.6(4)
ω2 115.0(1) 114.9(13) 132.0(7) 141.9(4) 147.3(11) 173.1(12)
ρm −0.10(12) −0.13(9) −0.13(8) −0.10(10) −0.14(7) −0.14(6)

Tc 428(25) 423(19) 421(19) 425(24) 420(19) 415(17)

350K λ 9.5(14) 8.6(11) 8.1(10) 7.2(10) 6.0(8) 5.0(5)
ω2 106.7(10) 113.8(1) 115.8(7) 127.5(16) 138.0(1) 167.5(30)
ρm 0.38(12) 0.36(10) 0.32(10) 0.30(8) 0.29(11) 0.24(9)

Linear screening 450K λ 7.6(13) 7.4(10) 6.6(8) 6.0(10) 5.2(6) 4.4(4)
ω2 119.9(11) 117.8(4) 135.8(3) 144.6(19) 157.1(6) 176.3(12)
ρm −0.11(11) −0.13(9) −0.14(8) −0.11(9) −0.14(7) −0.15(6)

Tc 428(24) 423(19) 420(19) 424(22) 418(19) 411(17)

aWe recalculate the LSA results. They are slightly different from those presented in Ref. [18] but within the error bars. The numerical
differences are due to different settings in analyzing the PIMD data.
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FIG. 2. Comparison between the full DFT-based implementation
(PAW method) and the LSA in (a) pair-scattering amplitude �m(q),
(b) effective pair interaction Wm(q), and (c) interaction parameters
λ(n). The results are for T = 450 K and P = 500 GPa. �m(q) and
Wm(q) are obtained by recasting the matrix elements of � and W as
a function of q = |k1 − k2| for k1, k2 in 0.8kF � |k1|, |k2| � 1.14kF .

summarized in Table I. For comparison, the LSA results are
also shown. We find that the results coincide well with the
LSA results. It confirms Liu et al.’s prediction that the su-
perconducting transition temperature of metallic hydrogen is
higher than its predicted melting temperature [18]. We note
that our prediction of Tc is only valid for the liquid phase. Tc

for the solid phase of metallic hydrogen had been thoroughly
studied in Ref. [6].

In Fig. 2, we show the comparison of the pair-scattering
amplitude �m(q) and the effective pairing interaction Wm(q, ν)
between the two implementations for P = 700 GPa and T =
450 K. We find that the results yielded by the two implementa-
tions are very close. We also show the interaction parameters
λ(n) in Fig. 2(c). To determine λ(n), we recast the matrix ele-
ment W11′ as a function of q = |k − k′| for 0.8kF � |k|, |k′| �
1.14kF and evaluate Eq. (3) by integrating over q [4]. It is
evident that the results also coincide well. It is not surprising
that the LSA can work well in metallic hydrogen systems
because hydrogen has no inner-core electron and the effective
KS potential is dominated by its local part which can be
well approximated by the LSA with an appropriate dielectric
function. For more general systems like hydrides, the LSA is
obviously inadequate, and our implementation based on the
standard first-principles approach will be useful.

72 128 200
250

300

350

400

450

500

8 16 24 32 48

(a) (b)

FIG. 3. Dependence of Tc on (a) different numbers of atoms and
(b) different numbers of beads for P = 700 GPa. The error bars
indicate the numerical uncertainties of the estimations of Tc’s, i.e.,
the values shown in parentheses in Table I.

We test the convergence of our calculation by varying the
size of the simulation supercell and the number of beads dis-
cretizing the imaginary time. In Ref. [18] and the calculation
shown above, we use a supercell with 200 hydrogen atoms
and discretize the imaginary time to 24 beads. In Fig. 3(a),
we show the dependence of estimated Tc on the number of
atoms. We find that Tc slightly decreases with the increasing
simulation size, but the difference is within the error bars.
In Fig. 3(b), we show the dependence of estimated Tc on
the number of beads. We find that only a relatively small
number of beads (>16) is needed to get a converged result.
The oversampling procedure discussed in Sec. II B is effective
in eliminating the discretization errors.

V. SUMMARY

In summary, we present a full DFT-based implementation
of the stochastic path-integral approach for estimating super-
conducting transition temperatures. We derive the formulas
for determining the Green’s function and the scattering T
matrix in the pseudobasis of the PAW method. Properly cal-
culating the S matrix elements to eliminate the error due to
the incompleteness of the basis is also discussed. We test our
implementation in metallic hydrogen liquid systems and get
results close to the those obtained in Ref. [18]. The calcula-
tion is in agreement with Liu et al.’s prediction and suggests
that metallic hydrogen could be a superconducting liquid as
its superconducting Tc is higher than the predicted melting
temperature of metallic hydrogen. With the full DFT-based
implementation, it becomes possible to apply the stochastic
path-integral approach to a wider class of systems such as
hydrides.
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