
PHYSICAL REVIEW B 104, 205307 (2021)

Exciton-polariton properties of hexagonal BN-based microcavity and their potential applications
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Microcavity exciton-polaritons are two-dimensional bosonic quasiparticles composed by excitons and pho-
tons. Using a model Hamiltonian with parameters generated from ab initio density-functional theory and
Bethe-Salpeter equation calculations, we investigate the exciton and the exciton-polariton properties of hex-
agnonal boron nitride (hBN) based microcavity. We show that hBN-based microcavities, including monolayer
and all-dielectric ones, are promising in optoelectronic applications. Room temperature exciton-polariton Bose-
Einstein condensation can be achieved because of the large oscillator strength and binding energy of the exciton,
and the strong interaction between the exciton-polaritons and the longitudinal optical phonons. Based on this
BEC state, an exciton-polariton mediated superconducting device can also be fabricated at a few tens of kelvin
using the microcavity structure proposed by Laussy et al. Phys. Rev. Lett. 104, 106402 (2010).
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I. INTRODUCTION

Excitons and photons can be strongly coupled in semicon-
ductors, resulting in an exciton-polariton [1]. A microcavity is
a platform to demonstrate the existence of this quasiparticle.
In these structures, excitons in the semiconductor quantum
well (QW) couple with the cavity photon [2]. One experimen-
tal report of such an exciton-polariton based on a microcavity
comes from Weisbuch et al., in a GaAlAs/GaAs QW system
[3]. Formed by two kinds of bosons, exciton-polaritons are
bosons by definition. Under suitable environment, they can
go through Bose-Einstein condensation (BEC). The lifetime
of such a microcavity exciton-polariton is typically short, in
order of several picoseconds. Therefore, equilibrium BEC
of exciton-polaritons in a microcavity is normally hard to
achieve in experiment.

By pumping excitons continuously into the system and
with the help of polariton-polariton scattering and polariton-
phonon scattering, this lifetime problem of the exciton-
polariton can be circumvented. One example of such a
dynamical nonequilibrium BEC state of exciton-polaritons
exists in CdTe-based microcavities [4]. The extremely small
effective mass of an exciton-polariton (typically 10−4–10−5m0

with m0 being the free electron mass) means that such a
BEC state could occur at moderate temperatures if the Rabi
coupling is large [5–8]. This remarkably increases the BEC
temperature when compared to the conventional ultracold
atomic systems (typically ∼nK). After the establishment of
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exciton-polariton BEC, there are macroscopic occupations in
the lower polariton branch (LP) k = 0 state, and coherence
exists. This gives rise to the possibility of fabricating a high-
quality laser without the requirement of population inversion
[9,10], which is probably one of the most energy-consuming
steps in conventional lasers.

Besides BEC, the exciton-polariton is also relevant to
the designing of superconducting devices. In conventional
Bardeen-Copper-Schrieffer (BCS) theory [11], electron-
phonon coupling plays an important role in mediating the
attractive interactions between electrons. Other mechanisms
of superconductivity, however, also exist. These mecha-
nisms include the magnon mediated [12,13], photon mediated
[14,15], the exciton mediated [16,17], and the exciton-
polariton mediated ones [18,19], etc. By constructing a
structure in which the BEC state of an exciton-polariton can
induce effective attractive interaction between electrons in the
adjacent layer, Laussy et al. proposed that the bogolons in
exciton-polariton BEC could induce superconductivity [18].
Similar to the generation of the exciton-polariton based BEC
state and the related fabrication of laser as described in the
former paragraph, creation of the exciton-polariton is the first
step. Large binding energy and strong oscillator strength of
the exciton are favorable factors.

In the past decade, two-dimensional (2D) materials have
received much attention due to their unique electronic
and optical properties, applicable to nanoelectronics and
nano-optical devices [20–26]. Because of the reduced screen-
ing effects, the exciton binding energies are substantially
larger and the oscillator strength is normally stronger than
their bulk correspondences. This may result in more stable
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FIG. 1. Sketch for (a) monolayer hBN microcavity, (b) all-
dielectric hBN microcavity, and (c) model structure for the exciton-
polariton mediated superconductivity.

exciton-polaritons at moderate temperatures. When the Rabi
coupling is large, a microcavity based on these 2D materials
can provide a better platform for the demonstration of the
BEC state, the BEC-based laser, and the exciton-polariton
mediated superconductor than the conventional GaAs, GaN,
and CdTe systems. Among these 2D materials, hexagonal
boron nitride (hBN) is unique due to its exceptionally large
exciton binding energies (∼2 eV for monolayer and ∼0.7 eV
for bulk) [27–30]. The wide band gap also means that when
room temperature BEC is achieved, a deep ultraviolet laser is
likely. This is a feature highly desired in the lighting industry.
Based on such considerations, we explore in this paper the
exciton-polariton related properties in the 2D-materials-based
macrocavity, with a special emphasis on hBN. The aim is
to provide preliminary theoretical results, which could be
helpful for future experimental studies of exciton-polariton
microcavities.

This paper is organized as follows. In Sec. II, we introduce
the background theory for the methods we used in simulating
these systems. In Sec. III, we modify and apply the theories
to realistic problems. Then we present our results in detail.
These results include the properties of the exciton-polariton
branches, the BEC state simulated by the semiclassical Boltz-
mann equation, and the possibility for the superconducting
microcavity structures. In Sec. IV, a brief summary of the
conclusions is given.

II. THEORY AND METHODS

A. Exciton-polaritons in microcavity

In a microcavity [see Figs. 1(a) and 1(b) for a typical
microcavity structure], photons are strongly confined in the
z direction. The energy dispersion of the photon reads

Ecav = h̄c

n

√
k2

z + k2
‖ . (1)

Here n is the refractive index, k‖ is the momentum of the
photon in the x-y plane, and kz = jπn

L ( j=1, 2, 3...) is its
discrete momentum in the z direction. The j = 1 mode is the
lowest one, and the other mode is well separated in energy.
Therefore, we only consider the j = 1 mode throughout this
paper. The exciton energy dispersion is approximated by the
effective mass model as

Eexc = Eexc0 + h̄2k2
‖

2mexc
, (2)

where Eexc0 is the exciton energy at the � point, and mexc is
the effective mass of the exciton to be fitted.

Under the rotating wave approximation, the exciton-
polariton Hamiltonian can be described in a simple way
as [1]

Ĥpol = Ĥcav + Ĥexc + ĤI

=
∑

Ecav(k‖, kz )â†
k‖ âk‖ +

∑
Eexc(k‖)b̂†

k‖ b̂k‖

+
∑

g(â†
k‖ b̂k‖ + âk‖ b̂

†
k‖ ). (3)

g is the Rabi coupling, which is half of the Rabi splitting. After
the diagonalization, the polariton Hamiltonian becomes

Ĥpol =
∑

ELPĉ†
LP,k‖ ĉLP,k‖ +

∑
EUPĉ†

UP,k‖ ĉUP,k‖ . (4)

Here the polariton operators are defined by

ĉLP/UP,k‖ = CLP/UP,k‖ âk‖ + XLP/UP,k‖ b̂k‖ . (5)

X and C are the Hopfield coefficients obtained from the di-
agonalization. The lower polariton (LP) and upper polariton
(UP) energy dispersion equals

ELP/UP(k‖) = 1
2 [Eexc + Ecav ±

√
4g2 + (Eexc − Ecav)2]. (6)

The lifetime of the LP mode (τpol) is determined by [1]

1

τpol
= |C|2

τcav
+ |X |2

τexc
. (7)

They describe the factions for the component of the LP mode
from the exciton and from the cavity photon. τexc is the radia-
tive lifetime of the exciton. τcav is the lifetime of the cavity
photon mode. The effective mass of LP is given by [1]

1

mLP
= |C|2

mcav
+ |X |2

mexc
, (8)

where the cavity photon effective mass is mcav = h̄n jπ
cL ∼

10−5m0. This leads to extremely small effective mass of the
LP mode, which is crucial for the high critical temperature of
BEC based on this exciton-polariton.

B. Excitonic properties from first principle

Excitons are neutrally charged bosons formed by electron-
hole pairs. A Bethe-Salpeter equation (BSE) is needed to
describe them. As many ab initio softwares (such as YAMBO

[31] and BERKELEYGW [32]) are available, it is convenient to
get the excitonic properties of a realistic material nowadays.
The BSE Hamiltonian reads

Hee′hh′ = (Ee − Eh)δeh,e′h′ + ( fe − fh)�ee′hh′ , (9)

with Ee(h) being the quasiparticle energy of the electron (hole)
and fe(h) being the occupation number. � is the Bethe-Salpeter
kernel calculated using the Kohn-Sham energies corrected by
a scissor operator and Kohn-Sham orbitals, representing the
interaction between an electron and a hole within the electron-
hole pair. After diagonalizing the BSE Hamiltonian, we get
the exciton eigenenergy Eλ, with λ labeling the excitonic
states. This determines the value of Eexc0 for each excitonic
branch in Eq. (2). The difference between the band gap Eg

and Eλ is the exciton binding energy Eλ
b .
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Following Ref. [26], we calculate the exciton radiative
lifetime from the BSE results. In 2D materials, its value for
an exciton in state λ at zero temperature reads

τλ(0) = h̄2c

8πe2Eλ(0)

Auc

μ2
λ

. (10)

Here μ2
λ is the square modulus of the exciton transition dipole

per unit cell in the x-y plane obtained from the BSE cal-
culation, Auc is the area of the unit cell, and Eλ(0) is the
exciton energy with zero wave vector. Using the effective
mass approximation for the exciton dispersion [26], the av-
erage radiative lifetime in state λ at temperature T is

τ T
λ = τλ(0)

3

4

(
2mλ

excc2

Eλ(0)2

)
kBT . (11)

mλ
exc is the exciton effective mass and kB is the Boltzmann

constant.

C. Exciton-polariton dispersion and Rabi coupling

The exciton-polariton dispersion was not considered from
first principle until recent years. In 2015, Vasilevskiy et al.
presented a classical electrodynamics method to get the
equation of motion for the exciton-polariton modes, using
parameters generated by density-functional theory (DFT)
calculations [33]. Parallel to this classical electrodynamics
method, exciton-polariton dispersion in a microcavity can also
be described by quantum mechanics, from quantized vector
potential and exciton states [34,35]. In this work, we follow
the route of Savona et al. in Ref. [34], but use parameters
generated by first principle BSE calculations. The differences
between monolayer and bulk microcavity are addressed by
taking limits for the width of the QW and that of the cavity.
Assuming a QW with a width of L′ embedded in a cavity with
a width of L, and the excitons are uniformly confined, the
equation of motion for the exciton-polariton reads [Eqs. (20)–
(22) in Ref. [34])]:

E2 − E2
exc = γ

E2

α3
[k0L′α + 2 cot

(
k0

L

2
α
)

sin2

(
k0

L′

2
α

)

− sin (k0L′α)]. (12)

Here, k0 = nEexc/c, and α =
√

|E2/E2
exc − k2

‖/k2
0 |. γ is the

effective interaction constant, which is directly related to the
exciton dipole moment μλ by

γ = 8π |μλ|2
h̄ncAuc(k0L′)2 . (13)

E appears on both sides of Eq. (12), meaning that it should
be solved self-consistently for each k‖. This leads to the
energy dispersions of all the exciton-polariton branches. For
monolayer (bulk) microcavity, we choose the limit of L′
approaching zero (L′ = L) and modify Eq. (12) to get the
dispersions in Secs. III A and III B We find that the dispersions
match perfectly with Eq. (6). By fitting with Eq. (6), the Rabi
coupling g can be obtained.

D. Exciton in screening environment

Screening plays an important role in describing the exci-
tonic properties. The large binding energy in 2D materials
comes from the reduced dielectric screening. In real appli-
cations of optical devices, however, 2D materials are often
sandwiched by dielectric materials. The dielectric screening
is expected to influence the excitonic properties. It is much
too computationally expensive to perform converged ab initio
BSE calculations with this factor taken into account. There-
fore, we employed a 2D Wannier exciton model [36].

In this model, the exciton Schrödinger equation reads[ − h̄2∇2
r /2μ − e2w2D(r)

]
ψexc(r) = Ebψexc(r). (14)

The screened Coulomb potential in two dimensions can be
described by the Keldysh potential [37]:

w2D(r) = [H0(�r/2r0) − Y0(�r/2r0)]/8ε0r0. (15)

Here H0 (Y0) is the zeroth order Struve function (Bessel
function of the second kind). � = εa + εb is the sum of the
relative dielectric constants of the materials in both sides.
The screening length is r0 = 2πα2D and α2D is the 2D
polarizability:

α2D = 2e2

(2π )2

∑
c,v

∫
k

|〈uc,k|∇k|uv,k〉|2
Ec,k − Ev,k

d2k. (16)

They can be obtained from first principle calculations. After
solving Eq. (14), we get the exciton binding energy Eb and the
exciton Bohr radius aB [aB = ∫

d2rψ∗
exc(r)rψexc(r)].

E. Exciton-polariton BEC described by the semiclassical
Boltzmann equation

We use the method of Porras et al. to describe the nonequi-
librium BEC in a semiclassical manner [38]. The LP branch
is divided into a lower polaritonic (lp) region and an exciton
reservoir region. The Boltzmann equation for the exciton-
polariton population reads

dN lp
k

dt
= W in

k n2
x

(
1 + N lp

k

) − W out
k nxN lp

k − �
lp
k N lp

k ,

dnx

dt
= −1

S

∑
k

dglp
k

[
W in

k n2
x

(
1 + N lp

k

) − W out
k nxN lp

k

]
− �xnx + px, (17)

where N lp
k and nx refer to the occupation number of the lower

polariton region and the density of the exciton reservoir. W in
k

and W out
k are the scattering rates. �

lp
k and �x are the loss

rates. Equation (17) together with the equations describing the
energy relaxation processes (details see Ref. [38]) leads to a
complete set of equations for the exciton-polariton dynamics.
After propagating the population, the reservoir density, and
the reservoir energy density to their stationary solution, we
can get the steady state for each pump strength.

F. Exciton-polariton mediated superconductivity

In conventional BCS theory, electron-phonon coupling
induces effective attractive interaction between electrons. Fol-
lowing this idea, Laussy et al. proposed an exciton-polariton
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mediated mechanism for superconductivity [18]. When BEC
happens, the exciton-polariton density is tremendously large,
the dipoles of the excitons can induce effective attractive inter-
action between the electrons in the neighboring region. Here
we investigate the superconductivity transition temperature
of the neighboring electron gas layer in this scenario. We
neglect the electron-phonon interaction and electron Coulomb
interaction to highlight the exciton-polariton mechanism.

The microcavity structure is shown in Fig. 1(c). The
distance between the 2D electron gas QW and the exciton-
polariton QW is L, which we set as several nanometers. The
reduced Hamiltonian after the Bogoliubov transformation and
the mean-field approximation are made reads

H =
∑

k

Eel(k)e†
kek +

∑
k

Ebog(k)b†
kbk

+
∑
k,q

M(q)e†
kek+q(b†

−q + bq). (18)

Eel(k) and Ebog(k) =
√

Ẽpol(k)(Ẽpol(k) + 2UN0A)

[Ẽpol(k) ≡ Epol(k) − Epol(0)] are the in-plane dispersion
of the electrons and the bogolons. N0 is the density of
the condensed exciton-polaritons and U = 6a2

BEbX 4/A is
the polariton-polariton interaction matrix element. A is the
quantization area, X is the exciton Hopfield coefficient.

The bogolon interacts with the electron through its exci-
tonic fraction and the interaction strength is

M(q) =
√

NCAXVX(q)

√
Ebog(q) − Ẽpol(q)

2UN0A − Ebog(q) + Ẽpol(q)
. (19)

VX is the electron-exciton interaction matrix element:

VX(q) = e−qL

2εA

{
e2

q[1+(βeqaB/2)2]3/2
− e2

q[1 + (βhqaB/2)2]3/2

+ edβe

[1 + (βeqaB/2)2]3/2
+ edβh

[1 + (βhqaB/2)2]3/2

}
,

(20)

where βe(h) = me(h)/(me + mh). The first and second terms
within the brace of Eq. (20) are negligible compared to the
third and fourth dipolar ones. The dipole ed can be achieved
by applying an electric field perpendicular to the 2D plane. As
the previous work in exciton-polariton mediated superconduc-
tivity [18,39,40], the effective interaction between electrons
can be expressed by the Fröhlich potential [41]:

Veff (q, ω) = 2M(q)2Ebog(q)

(h̄ω)2 − Ebog(q)2
. (21)

Averaging the interaction over the 2D Fermi surface of the
electrons, we get the effective electron-electron interaction:

U0(ω) = AN (0)

2π

∫ 2π

0
Veff (q, ω)dθ. (22)

Here q equals
√

2k2
F (1 + cosθ ), and N (0) = me/(π h̄2) is the

electron density of states at the Fermi surface. U0 is calculated

TABLE I. Rabi coupling of the lowest bright exciton in eight
typical 2D TMDs and 2D nitrides calculated by Eq. (24) based on
existing BSE results from Refs. [25] and [26]. Detuning is set to
zero, and the refractive index n is unity. The unit of Rabi coupling
g is meV.

Materials g Materials g

MoS2 20.8 BN 99.4
MoSe2 19.0 AlN 85.4
WS2 23.5 GaN 70.3
WSe2 20.1 InN 32.4

numerically and substituted into the gap equation through

�(ξ, T ) = −
∫ +∞

−∞

U0(ξ − ξ ′)�(ξ ′, T ) tanh (E/2kBT )

2E
dξ ′,

(23)
where E =

√
�(ξ ′, T ) + ξ ′2. Equation (23) can be solved by

iteration as long as the initial guess is rational. The supercon-
ductivity can happen if the �(0, T ) is nonzero.

These equations form the basis upon which superconduc-
tivity is discussed in this work. We note, however, that they
are only applicable in the adiabatic limit (the characteristic
bogolon energy ωB is much smaller than the Fermi energy
EF). The final results presented in the paper is beyond this sce-
nario. To cope with this problem, the defects of the Fröhlich
potential will be discussed in Sec. III B.

III. RESULTS

A. Monolayer hBN microcavity

The structure of the monolayer hBN-based microcavity is
shown in Fig. 1(a). The monolayer is placed in the middle of
the cavity and the dielectric materials fill the space between
the distributed Bragg reflectors (DBRs). In this cavity, L′

in Eq. (12) approaches 0, leading to k0L′α−sin(k0L′α)
(k0L′ )2 → 0 and

sin2(k0
L′
2 α)

(k0L′ )2 → α2

4 . This means that Eq. (12) becomes

E2 − E2
exc = γ ′ E

2

α
cot

(
k0

L

2
α
)
, (24)

where

γ ′ = 4π |μλ|2
h̄ncAuc

. (25)

We apply Eq. (24) to several typical 2D nitrides (BN, AlN,
GaN, and InN) and 2D transition metal dichalcogenides
(TMDs, including MoS2, MoSe2, WS2, and WSe2), using
existing ab initio excitonic properties from BSE calculations
[25,26]. Table I shows the Rabi coupling of the lowest bright
exciton in these materials when detuning is zero and the re-
fractive index is unity. 2D nitrides based microcavities have
larger Rabi coupling than 2D TMDs in general, and hBN
has the largest Rabi coupling among them. This indicates
that hBN is a very good candidate material for the exciton-
polariton-based properties to be investigated.

For a more detailed understanding of the excitonic proper-
ties of hBN, we performed DFT calculations using QUANTUM

ESPRESSO (QE) and then the BSE calculations using YAMBO
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FIG. 2. LDA band structure of (a) monolayer hBN and (b) bulk
hBN microcavity. The distance between the red and blue dashed line
indicate the direct band gap.

[31,42,43]. This subsection focuses on the monolayer. Local
density approximation (LDA) is used in describing the Kohn-
Sham exchange-correlation potential, along with a 16 × 16 ×
1 k-point mesh for Brillouin-zone sampling and a kinetic en-
ergy cutoff of 80 Ry for the expansion of the wave functions.
The direct LDA band gap is 4.62 eV at K as shown in Fig. 2(a).
In the BSE calculation, a scissor operator of 2.87 eV is applied
to the Kohn-Sham energies, and a denser k-point mesh of
36 × 36 × 1 is used to converge the results. The transitions
between all four valence bands and the lowest four conduction
bands are included. An exciton binding energy of 2.02 eV is
obtained. The lowest bright exciton is mainly contributed by
the transition around the K point.

The optical absorption spectrum at the random-phase ap-
proximation (RPA) level and at the BSE level are shown in
Fig. 3(a). The binding energy and the absorption spectrum are
similar to recent studies [25,44]. Compared to the RPA result,
the BSE spectrum captures the excitonic effects, which sub-
stantially redshift the optical peak and increase the intensity of
the absorption edge. The four lowest exciton states (labeled as
1, 2, 3, and 4) have prominent oscillator strengths (larger than
10% of the maximum value). The degenerate exciton states 1
and 2 (3 and 4) are 1s (2p) states coming from K and K ′ re-
spectively. Their detailed information, including the positions
of the absorption energy, the effective interaction constant,
and the radiative lifetimes at zero and room temperatures, are
shown in Table II. Due to large oscillator strength, the zero
temperature radiative lifetimes of these four exciton states are
very short, of the order 101–102 fs. Combined with the exciton
effective mass extracted from the ab initio calculations [45],
we calculate the room temperature radiative lifetimes in the
last column. They are at the order of 101 ps. The increase of
the radiative lifetime at finite temperature is mainly due to

TABLE II. Exciton energy, effective interaction constant, Rabi
coupling at zero detuning, radiative lifetimes at 0 K [τλ(0)] and
average radiative lifetimes at room temperature (τRT

λ ) for the 1, 2,
3, and 4 exciton states in 2D hBN.

Index E (eV) γ ′ (a.u.) g(meV) τλ(0) (fs) τRT
λ (ps)

1 5.473 5.486 99.43 29.15 30.85
2 5.473 5.486 99.43 29.15 2.06
3 6.356 1.561 53.04 88.22 76.60
4 6.356 1.561 53.04 88.22 21.62

FIG. 3. Exciton and polariton properties for monolayer hBN mi-
crcavity. (a) Absorption spectrum of 2D hBN calculated by BSE
(black line) and RPA (red line). (b) Rabi coupling of polaritons com-
posited by cavity photon mode and exciton 1 (black line) for different
photon wavelength using Eq. (24). The corresponding results using
approximate expression Eq. (26) are in red line. (c) Dispersion of
the five branches of polaritons [labels are in (d)] and cavity photon
(black solid line) when zero detuning. (d) Polariton lifetimes for
the five branches of polaritons. (e) Binding energy (black solid line)
and radius of the exciton (red dashed line) under different dielectric
screening environment. (f) Rabi coupling of polaritons composited
by cavity photon mode and exciton 1 under different dielectric
screening environment.

the thermal distribution of the excitonic states, away from the
edge.

Rabi coupling at different photon wavelengths of the low-
est two excitons is shown in Fig. 3(b) when n = 1. Its
magnitude is large, which decreases only by ∼10 meV as the
photon wavelength increases. The approximate expression for
the Rabi coupling [46,47],

h̄gλ �
√

2πE exc
λ μ2

λ

n2LAuc
, (26)

also matches well with the results of Eq. (24).
To quantify the coupling between the four excitonic states

and the cavity photon mode, we construct a Hamiltonian:

Ĥpol =

⎛
⎜⎜⎜⎝

Ecav g1 g2 g3 g4

g1 Eexc1 0 0 0
g2 0 Eexc2 0 0
g3 0 0 Eexc3 0
g4 0 0 0 Eexc4

⎞
⎟⎟⎟⎠. (27)
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FIG. 4. (a)–(e) Nonzero Hopfield coefficients for monolayer
hBN microcavity polaritons at zero detuning for the first polariton
mode to the fifth polariton mode.

Diagonalizing this Hamiltonian, we get five exciton-polariton
modes [labeled as p1, p2, p3, p4, and p5, shown in Fig. 3(c)].
As Eexc1 = Eexc2, Eexc3 = Eexc4, and Eexc3 − Eexc1  g, the

splitting between p1 and p3 (p3 and p5) equals 2
√

g2
1 + g2

2

(2
√

g2
3 + g2

4).
Each of the five exciton-polariton modes is a linear com-

bination of the original four excitonic states and one cavity
photon mode. The corresponding Hopfield coefficients are
labeled as C for the photon mode and X1, X2, X3, X4 for the
excitonic ones. In Fig. 4, we show the square modulus of
these coefficients. As can be seen in Fig. 4(b), the p2 exciton-
polariton mode is comprised by the contributions from X1 and
X2, meaning that it is a purely excitonic state. The same fea-
ture holds for the p4 exciton-polariton mode as it is comprised
purely by contributions from X3 and X4 [Fig. 4(d)]. The p1,
p3, and p5 exciton-polariton modes, on the other hand, show
strong features of coupling, especially in the region when the
dispersion of the cavity photon mode intersects with the exci-
ton energies. This is clearly seen if we compare the dispersion
of the exciton-polariton modes in Fig. 3(c) with the analysis of
the Hopfield coefficients in Fig. 4. As Eexc3 − Eexc1  g, p1 is
composed by the photon mode and the first degenerate exciton
pair before the crossing near Eexc1 [first crossing in Fig. 3(c)]
and it is a bare excitonic state after that. p5 is dominated by
the second degenerate exciton pair and photon fraction before
and after the crossing near Eexc3 [second crossing in Fig. 3(c)].
p3 is a mixture of all five components as it goes through

both coupling regions. It is composed purely by the second
degenerate exciton pair after the second crossing.

The lifetimes of these five exciton-polariton modes are
evaluated by

1

τpol
= |C|2

τcav
+ |X1|2

τexc1
+ |X2|2

τexc2
+ |X3|2

τexc3
+ |X4|2

τexc4
. (28)

We assume a typical cavity photon lifetime of 5 ps for high
quality microcavity. The results are shown in Fig. 3(d), which
can also be understood by analyzing the composition of each
exciton-polariton mode in Fig. 4. The lifetimes of the p2 (p4)
exciton-polariton mode is 3.6 ps (31.6 ps). They are constant
with respect to k‖ in Fig. 3(d), as the compositions do not
change with k‖ in Fig. 4. As the lifetimes of the exciton state
2 and the photon mode (5 ps) are short compared with the
others, the exciton-polariton modes with a large fraction of
them have short lifetimes. This leads to short lifetimes of the
p1, p2, p3 modes before the second crossing and that of the
p5 mode after it.

In reality, the dielectric materials filling the empty space
in Fig. 1(a) induce screening. Here we quantify the screening
effects on the exciton binding energy and Rabi coupling using
Eqs. (14) and (15). The screening length r0 is adjusted to
match the ab initio binding energy in vacuum. The resulting
binding energy and the exciton Bohr radius as a function of the
dielectric constant is shown in Fig. 3(e). The binding energy is
substantially reduced by the environmental screening and the
radius increases linearly with the dielectric constant. Under
moderate temperatures, the exciton is still stable with large
dielectric constant. Based on such excitonic properties after
screening, we evaluate the Rabi coupling using Eq. (24). The
exciton oscillator strength can be approximated by

|μλ|2 ∝ |p0|2|ψλ(0)|2
Eλ

. (29)

Here p0 is the coupling strength, which we assume as con-
stant. Eλ is the exciton energy, which equals Eg − Eb. Eg is
approximated by Eg = 1.14Eb + 5.07, which is fitted from ab
initio results [48]. ψλ(0) is the exciton wave function at zero
relative distance between the electron and the hole within the
pair. The Rabi coupling decreases with increasing dielectric
constant as shown in Fig. 3(f). Under moderate dielectric
screening, it is still larger than the room temperature thermal
energy, indicating the stability of the exciton-polaritons.

The most attractive property of such an exciton-polariton
is the possibility of room temperature BEC. Using semi-
classical Boltzmann equation, plenty of works have been
reported on the possibility and mechanism that drive the mi-
crocavity exciton-polaritons to the lowest state (k‖ state in
the LP) to achieve BEC [38,49–52]. It has been proven that
polariton-polariton interaction and polariton-phonon interac-
tion are essential in the relaxation process. In conventional
semiconductors such as GaAs or CdTe, the Rabi coupling
is so small that the optical phonons cannot participate in
this process and only acoustic phonons contribute [49,50,52].
For the relaxation process of exciton-polariton in 2D hBN
microcavity, scattering with an acoustic phonon is negligible
as acoustic phonon dispersions are too flat to fulfill the energy
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and momentum conservation law. Optical phonons, on the
other hand, participate in this process.

To theoretically describe this process, we follow a two-step
strategy. The interaction between exciton-polaritons is derived
first by taking into account the interaction between their orig-
inal components. The Hamiltonian is first written as

HI =
∑

k1,k2,q

Mxx

2S
(a†

k1
a†

k2
ak1+qak2−q + b†

k1
b†

k2
bk1+qbk2−q)

+ σsat

S
(a†

k1
a†

k2
ak1+qck2−q + b†

k1
b†

k2
bk1+qck2−q) + H.c.

(30)

We only consider p1, p2, and p3 exciton-polaritons. a and b
are the operators for the 1 and 2 excitonic states, and c is the
cavity photon operator. Mxx = 6Eba2

B and σsat = 3.6ga2
B are

exciton-exciton and exciton-photon interaction strengthes re-
spectively. Transforming a, b, and c into the exciton-polariton
basis,

pp1,k = X p1
1,kak + X p1

2,kbk + Cp1
k ck,

pp2,k = X p2
1,kak + X p2

2,kbk + Cp2
k ck,

pp3,k = X p3
1,kak + X p3

2,kbk + Cp3
k ck, (31)

representing HI in terms of exciton-polariton operators and ne-
glecting the p2 and p3 branch, we can get the lowest polariton
branch:

Hp1 =
∑

k

εp1,k p†
p1,k pp1,k

+
∑

k1,k2,k3,k4

V p1−p1
k1,k2,k3,k4

2S
p†

p1,k1
p†

p1,k2
pp1,k3 pp1,k4 , (32)

where

1
2V p1−p1

k1,k2,k3,k4

= (
1
2 Mx xX p1

1,k1
X p1

1,k2
X p1

1,k3
X p1

1,k4

+ 1
2 Mx xX p1

2,k1
X p1

2,k2
X p1

2,k3
X p1

2,k4
+ σsatC

p1
k1

X p1
1,k2

X p1
1,k3

X p1
1,k4

+ σsatX
p1
1,k1

X p1
1,k1

Cp1
k3

X p1
1,k4

+ σsatC
p1
k1

X p1
2,k2

X p1
2,k3

X p1
2,k4

+ σsatX
p1
2,k1

X p1
2,k1

Cp1
k3

X p1
2,k4

)
δk1+k2,k3+k4 . (33)

The coupling between the exciton, photon, and phonon
has received much attention, and an elementary excitation
named “phonoriton” was proposed to describe a quasiparticle
resulting from their interactions [53]. We note, however, that
the coupling between the exciton and photon is much stronger
in the microcavity when the Rabi coupling is large. Here
we carry out our simulations in this scenario and investigate
the exciton-polariton relaxation process toward BEC. As will
be demonstrated, the scattering between the exciton-polariton
and the phonon plays an important role. The interactions be-
tween the LO phonons and the exciton-polariton were taken
into account through

Hp1−ph =
∑
k,q

M(|�k, �q|) × (cLO,q − c†
LO,−q,

)p†
p1,k+q pp1,k.

(34)
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FIG. 5. Results of room temperature BEC analysis using Boltz-
mann equation and generalized GP equation. The cavity photon
wavelength is 230 nm. (a) Condensed fraction when the opti-
cal phonons are included. (b) Condensed fraction without optical
phonons. (c) Three typical population curve under three different
pump strength. (d) Energy blueshift of lowest polariton mode under
different pump strength.

The interaction matrix element can be described by the Fröh-
lich model [52,54–56] as

M(k, q) = iXkXk′

√
2πe2h̄ωLO

�q2
‖V

(
1

ε∞
− 1

ε0

)
[I‖

e (|q|)−I‖
h (|q|)],

(35)
where

I‖
e(h) =

[
1 +

(
me(h)

2mexc
|q‖|aB

)2]−3/2

, (36)

and Xk and Xk′ are Hopfield coefficients.
After these treatments, we solve the Boltzmann equa-

tion using the method described in Sec. II E with
polariton-polariton scattering and polariton-LO phonon scat-
tering included. The results are shown in Figs. 5(a) and
5(b). The pumping threshold is 1 × 102 μm−2 ps−2 (35 ×
102 μm−2 ps−2) when polariton-LO phonon scattering is (is
not) considered.

Although polariton-polariton scattering alone is enough to
achieve BEC, polariton-LO phonon scattering plays an impor-
tant role in the exciton-polariton relaxation process. It lowers
the pumping threshold by nearly two orders of magnitude. The
strong polariton-LO phonon scattering comes from the large
Fröhlich interaction matrix element in Eq. (35). It is large
when the transfer momentum q is small, which is the case
in the exciton-polariton relaxation process. The population in
logarithm scale is shown in Fig. 5(c). As the pumping strength
is higher, the population changes to Boltzmann distribution
(black line) at threshold, and to Bose-Einstein distribution (red
line) when the pumping strength is higher than the threshold.

One side effect for the use of pumping is that the energy of
the exciton-polariton mode will go through a renormalization.
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We can estimate this using the generalized Gross-Pitaevskii
(GP) equation [8,57]:

ih̄
dψ

dt
=

[
E0 + α|ψ |2 + gRnR + i

2
(h̄rnR − �)

]
ψ,

dnR

dt
= P − (�R + r|ψ |2)nR. (37)

Here ψ and nR are the exciton-polariton field and the reservoir
density. E0 is the bare exciton-polariton energy. α and gR

are the polariton-polariton interaction and lower polariton-
reservoir exciton interaction strengthes. � and �R are the
exciton-polariton decay rates. r is the condensation rate
(including contributions from both polariton-polariton and
polariton-phonon scattering), and P is the pumping rate.
All of these parameters can be estimated from each spe-
cific material. The threshold pumping rate is P0 = ��R

h̄r . The
exciton-polariton energy shift above and below the threshold
is evaluated by

�Ebelow = gRP

�R
,

�Eabove = h̄Pα

�
− �Rα

r
+ gR�

h̄r
. (38)

The result for the 2D hBN microcavity is shown in Fig. 5(d).
The slope is smaller above the threshold than before. The
blueshift is of the meV order. These values are small and can
be reasonably neglected in the Boltzmann equation.

B. All-dielectric hBN microcavity

Now we investigate the all-dielectric hBN microcavity. We
first focus on the optical properties of bulk hBN. The LDA
ground state is obtained using a 6 × 6 × 2 k-point mesh, along
with a kinetic cutoff of 110 Ry for the expansion of the wave
functions. The band structure is shown in Fig. 2(b). The direct
band gap within LDA is 4.51 eV, located at H . It is marked
in the figure by dashed lines. In BSE calculation we use a
dense k-point mesh of 18 × 18 × 6 and take the highest three
valence bands and lowest two conduction bands as transition
bands. A scissor operator of 2.31 eV is applied to the Kohn-
Sham energies. The lowest exciton is mainly comprised by
the transitions around K with a binding energy of 0.76 eV.
The absorption spectrum is shown in Fig. 6(a). We find that
the RPA spectrum, which only takes interband absorption
into account, deviates a lot from the experimental results. As
a comparison, the BSE spectrum with 0.17 eV broadening
matches the experiment results much better, indicating that
the excitonic effects are essential here. The refractive index
calculated from BSE result by n(ω) =

√
Reε+|ε|

2 is shown in
Fig. 6(b). Near the absorption peak, the refractive index also
shows a peak. The degenerate exciton pair at 6.06 eV have the
strongest oscillator strength, and we will only focus on them.

The structure of all-dielectric hBN microcavity is shown in
Fig. 1(b). The bulk hBN fills all the space of the microcavity
between DBRs. Using Eq. (12) with L′ = L and diagonalizing
the following Hamiltonian:

Ĥpol =
⎛
⎝Ecav g1 g2

g1 Eexc1 0
g2 0 Eexc2

⎞
⎠, (39)
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FIG. 6. Exciton and polariton properties for all-dielectric hBN
micrcavity. (a) Absorption spectrum of bulk hBN calculated by
BSE (black solid line) and RPA (blue solid line) compared with
the experimental results [60] (red dashed line). (b) Refractive index
calculated from the BSE reults. (c) Dispersion of the three branches
of polaritons and cavity photon (black line). (d) Rabi coupling of po-
laritons composited by cavity photon mode and exciton 1 (black line)
for different photon wavelength using Eq. (12). The corresponding
results using approximate expression Eq. (26) are in red line.

we get the exciton-polariton energy dispersion. The results
are shown in Fig. 6(c). Two degenerate excitons together with
photon mode form three exciton-polariton modes, labeled p1,
p2, and p3. The middle branch, p2, is a linear combination
of two excitons and the p1 and p3 branches are mixtures
of two excitons and one photon modes. The Rabi coupling
is several times larger than the room temperature thermal
energy at different photon wavelengths, as demonstrated in
Fig. 6(d). Its minimum value at around 210 nm results from
the maximum of the refractive index, which comes from the
bright excitons at 6.06 eV. In an all-dielectric microcavity,
there are more phonon modes scattering with the exciton-
polaritons. Intuitively, the dynamics toward BEC will be even
easier. However, the radiative lifetime of the excitons at finite
temperature in bulk hBN is hard to estimate, as the exciton
effective mass is ill-defined [58]. Consequently, a pure theo-
retical simulation of the BEC properties as that in monolayer
is not presented in this paper. We note, however, that the
radiative lifetime is approximately 800 ps at room temperature
according to a recent experiment [59]. This value indicates
that the decay of the exciton-polaritons in all-dielectric BN
microcavity is even slower and the critical pumping strength
will be low. Therefore, the bulk hBN-based microcavity is also
promising in applications related to the exciton-polariton.

C. Exciton-polariton mediated superconductivity

Recently, several theoretical works have proposed that
superconductivity can be induced by effective attractive
interactions between the electrons mediated by the exciton-
polariton [18,19,61]. Here we investigate possibilities of this
using hBN-based microcavity. The structure is shown in
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FIG. 7. Exciton-polariton mediated superconductivity in BN-
based microcavity structure shown in Fig. 1(c), when Nc = 1 ×
1013 cm−2, ωB = 150 meV, L = 2 nm, d = 1 nm, and ε = 4. The
figure shows Tc calculated by McMillan formula ([Eq. (40), black
line], by vertex correction formula [Eq. (41), red line], and by gap
equation using Fröhlich potential [Eqs. (21)–(23), blue line] with
different 2DEG Fermi energy EF.

Fig. 1(c). The dielectric constant of the vacuum space is
chosen as 4. We set the condensed exciton-polariton density
to be a very large value, Nc = 1 × 1013 cm−2. Now the char-
acteristic bogolon energy ωB is ∼150 meV. Under an electric
field perpendicular to the 2D layer, the condensated exciton-
polaritons can interact with the electrons in the 2D electron
gas QW. We set the distance between these QWs as 2 nm.
These parameters are rather realistic. For simplicity, we ignore
the Coulomb interaction and electron-phonon coupling in the
2DEG to highlight the influence of the exciton-polariton.

As shown in Fig. 7, the superconducting transition tem-
perature Tc calculated by the gap equation using the Fröhlich
potential [Eqs. (21)–(23)] is high, even up to room tempera-
ture. This is not physical because the large value of Tc is a
consequence of the Fröhlich potential used [62] [Eq. (21)].
Although the singularities of this potential can be removed
by computing principal values numerically [39], they will still
develop two large shoulders in Eq. (22) [18]. This may lead to
a serious overestimation of Tc.

In order to overcome these defects of the Fröhlich poten-
tial, we apply the McMillan formula [63,64]

Tc = ωB

1.2
exp

[
−1.04(1 + λ)

λ

]
, (40)

where λ = −U0(0) is the electron-bogolon coupling strength.
As shown in Fig. 7, Tc is substantially reduced, to several
tens of kelvin. Upon this, we also note that the McMillan
formula is only applicable when the adiabatic approximation
is valid and the Migdal theorem holds [65], i.e., ωB � EF.
Here M ≡ ωB/EF ∈ [0.5, 1], and the adiabatic approximation
and Migdal theorem may fail.

To check how this impacts on the final results, we further
consider the vertex correction and calculated Tc by [66]

Tc = 1.13ωB√
e(1+M )

exp

[
1

2

M

(1+M )

]
exp

[
−1+λz[1/(1+M )]

λ�

]
.

(41)

The effective coupling λz and λ� are related to adiabatic
coupling strength λ, and they are defined in Ref. [66] in detail.
From Fig. 7, we see that the vertex correction further reduces
Tc compared to the McMillan formula. As EF gets larger, their
Tcs tend to converge. When the EF is smaller than ωB, the
above two formulas are not applicable, and the Tc should be
calculated by the nonadiabatic limit formula [67]:

Tc ∼ EF

1 + EF
ωB

exp

(
− 1

λNA

)
. (42)

Here λNA = N (0)
π

∫ 2π

0 dθ
|Mq|2
ωq

and q2 = 2m(ωq + EF) + k2
F −

2
√

2m(ωq + EF)kF cos θ . Tc is strongly suppressed and the
value computed by (42) is vanishingly small. We note, how-
ever, that the situation in the system considered belongs to
the region when the vertex correction is applicable (M ≡
ωB/EF ∈ [0.5, 1]). Therefore, we conclude that Tc can reach
several tens of Kelvin. Such 2D material based microcavities
is promising for the fabrication of superconducting devices,
based on this scenario of exciton-polariton mediated super-
conductivity.

IV. CONCLUSION

In summary, we studied the exciton-polariton properties
in hBN-based microcavities. Using ab initio calculations
(DFT + BSE), we obtain exciton properties including absorp-
tion spectrum, exciton energy, and exciton radiative lifetimes
for hBN. Based on these ab initio results, we investigate
the exciton-polariton dispersion, Rabi coupling, Hopfield
coefficients, and exciton-polariton lifetimes for hBN-based
microcavities. The oscillator strength in both monolayer and
bulk hBN is very large, leading to large Rabi coupling.
There are five non-negligible exciton-polariton modes in the
monolayer hBN and three in the bulk hBN. We analyzed
the component fraction and lifetime of each mode. With the
help of the Boltzmann equation, we find that room temper-
ature exciton-polariton BEC can be achieved in hBN-based
microcavity owing to the large oscillator strength, binding
energy, and the strong polariton-LO phonon interactions. Su-
perconductivity at a few tens of Kelvin may also be induced
by polariton-electron interaction, if the microcavity struc-
ture is specially designed. Overall, we conclude that hBN
microcavities are very suitable platforms for studying the
rich physics associated with exciton-polaritons. And we hope
this work can stimulate more experimental/theoretical studies
and the predictions presented in this paper can be further
tested.
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