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We develop a nonperturbative approach for calculating the superconducting transition temperatures (Tc’s) of
liquids. The electron-electron scattering amplitude induced by electron-phonon coupling (EPC), from which an
effective pairing interaction can be inferred, is related to the fluctuation of the T matrix of electron scattering
induced by ions. By applying the relation, EPC parameters can be extracted from a path-integral molecular
dynamics simulation. For determining Tc, the linearized Eliashberg equations are reestablished nonperturbatively.
We apply the approach to estimate Tc’s of metallic hydrogen liquids. It indicates that metallic hydrogen liquids
in the pressure regime from 0.5 to 1.5 TPa have Tc’s well above their melting temperatures and therefore are
superconducting liquids.
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I. INTRODUCTION

Mercury, the only metallic element which is a liquid un-
der the ambient conditions, happens to be the first super-
conductor ever discovered. At a superconducting transition
temperature (Tc) of 4.1 K, however, it is frozen long before
entering into the superconducting state. As a matter of fact,
all superconductors discovered so far are solids. It seems
improbable to find a superconducting liquid. Recently, the
possibility emerges with the report of a possible observation
of the Wigner-Huntington transition to metallic hydrogen [1].
Theoretically, it is predicted that hydrogen forms an atomic
metal [2] and has a relatively low melting temperature in the
pressure regime from 0.5 to 1.5 TPa [3,4]. On the other hand,
Tc predicted for the solid phase of metallic hydrogen is much
higher than the melting temperature [5]. It raises an intriguing
question: Can a metallic hydrogen liquid be superconducting?

A theoretical answer to the question would require devel-
oping a formalism for predicting Tc’s of liquids. For metallic
hydrogen liquids, Jaffe and Ashcroft present an estimate of
Tc in the density range within 1.2 � rs � 1.6 [6], where
rs ≡ (3/4πne)1/3/aB is the dimensionless density parameter,
with ne being the electron density and aB the Bohr radius.
The density range is now believed not in the regime forming
the atomic metal [2]. Their formalism is based on a heuris-
tic generalization of the conventional electron-phonon cou-
pling (EPC) theory [7,8], which is developed specifically for
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ordinary solids, relies on the harmonic approximation of ionic
motions, and is perturbative by nature. For liquids, however,
the harmonic approximation breaks down and there is no
apparent small parameter to facilitate a perturbative treatment.
The applicability of the conventional EPC theory is therefore
questionable.

It is desirable to build the EPC theory on a firmer ground
and seek for a formalism with applicability extendable to
liquids and other unconventional systems such as anharmonic
solids [9,10]. With the advances of modern computation tech-
niques, e.g., the ab initio path-integral molecular dynamics
(PIMD) methods [11,12], we are now at a much better position
for applying such a formalism and updating the calculation of
metallic hydrogen liquids. More intriguingly, the development
would also give rise to a prospect of searching for high-Tc EPC
superconductors in unconventional systems.

In this paper, we develop a nonperturbative approach for
calculating Tc’s of liquids. The central ingredient of our
approach is an exact relation between the electron-electron
scattering amplitude induced by EPC and the fluctuation of
the T matrix of electron scattering induced by ions. The fluc-
tuation can be evaluated with a PIMD simulation, and an ef-
fective pairing interaction can be inferred from the scattering
amplitude. Our approach thus enables the evaluation of EPC
parameters from first principles for liquids. For determining
Tc, we rederive the Eliashberg equations in a nonperturbative
context. The approach is applied to investigate the supercon-
ductivity of the liquid phase of metallic hydrogen. We find that
metallic hydrogen liquids in the pressure regime from 0.5 to
1.5 TPa have Tc’s well above their melting temperatures and
therefore are superconducting liquids.

The remainder of the paper is organized as follows. In
Sec. II, we develop the theory of the superconductivity in
liquids and general systems. The main theoretical results are
summarized in Sec. II A, and the proofs of these results
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are discussed in subsequent sections. Based on the theory, a
numerical implementation for metallic hydrogen is detailed in
Sec. III, with main results summarized in Sec. III C. Finally,
Sec. IV is a summary.

II. THEORY

A. Summary of main results

In this section, we summarize the main theoretical results
of this paper. They form the theoretical basis of calculating
Tc’s of liquids. The proof of these results is presented in
subsequent sections.

1. Notations

In our formalism, we define two kinds of single-particle
Green’s functions for electrons. G[R(τ )] is the Green’s func-
tion of an electron system subjected to the ionic field with
respect to a given ion configuration (trajectory) R(τ ):

G[R(τ )](rτ, r′τ ′) = −Tr{T̂τ [ρ̂ei[R(τ )]ψ̂σ (rτ )ψ̂†
σ (r′τ ′)]},

(1)
where R(τ ) ≡ {Ri(τ ), i = 1 . . . Ni} is the short-hand notation
of the trajectories of Ni ions, with τ ∈ [0, h̄β ), β ≡ 1/kBT
being the imaginary time arising in the Matsubara repre-
sentation [13,14], ψ̂σ (rτ ) and ψ̂†

σ (r′τ ′) are electron field
operators, and ρ̂ei ≡ Z−1

ei T̂τ exp[−(1/h̄)
∫ h̄β

0 dτ (K̂e + V̂ei(τ ))]
denotes the effective density matrix of the electron system
with a grand-canonical Hamiltonian K̂e and subjected to a
τ -dependent ionic field V̂ei(τ ). See Sec. II B 2 for details. Due
to the presence of V̂ei(τ ), which breaks both the spatial and
temporal translational symmetries, the Green’s function is in
general not a function of (r − r′, τ − τ ′).

The physical Green’s function, which is denoted as Ḡ, is
obtained from G[R(τ )] after an ensemble average over ion
trajectories. See Sec. II B 2 for the definition of the ensem-
ble average. For liquids, both the spatial and the temporal
translational symmetries are recovered after the average. As a
result, Ḡ is a function of (r − r′, τ − τ ′). We define its Fourier
transform as

Ḡ(ωn, k) =
∫

dτ

∫
dreiωn(τ−τ ′ )−ik·(r−r′ )Ḡ(r − r′, τ − τ ′),

(2)
where ωn ≡ (2n + 1)π/h̄β, n ∈ Z is a Fermionic Matsubara
frequency and k is a wave vector. Note that we distinguish a
function from its Fourier transform by their arguments [i.e.,
(r − r′, τ − τ ′) vs (ωn, k) ].

We adopt an abbreviated matrix notation for presenting our
formalism. A hatted symbol, e.g., T̂ in Eq. (6), denotes a
matrix, while T11′ in Eq. (5) denotes an element of the matrix.
The indices of matrix elements are denoted by (decorated)
numbers (e.g., 1, 1′, or 1̄) instead of usual alphabets. The
indices refer to the set of parameters labeling the basis of
the matrix. We choose the basis in a particular way such that
the average (physical) Green’s function Ḡ is diagonal, i.e.,
[Ḡ]11′ = Ḡ1δ11′ . For liquids, the index 1 refers to a Matsubara
frequency-wave vector pair (ωn, k), and 1′ to (ωn′ , k′), and
Ḡ1 ≡ Ḡ(ωn, k), δ11′ ≡ δωn,ωn′ δk,k′ .

For liquids, which have both the temporal and the spatial
translational symmetries, the basis is just the plane-wave func-

tion ϕωnk(rτ ) = (h̄βV )−1/2 exp (−iωnτ + ik · r), where V is
the total volume of the system. In this case, matrix indices
refer to the pair of (ωn, k). With the notation, a matrix element
T (rτ, r′τ ′) ≡ 〈rτ |T̂ |r′τ ′〉 can be expressed as

T (rτ, r′τ ′) =
∑

ωn,ωn′ ,k,k′
Tωnk,ωn′ k′ϕωnk(rτ )ϕ∗

ωn′ k′ (r′τ ′)

≡
∑
11′

T11′ϕ1(rτ )ϕ∗
1′ (r′τ ′), (3)

where the summations over the indices are interpreted as∑
1

≡
∑
ωn

∑
k

. (4)

For crystalline solids, the basis should be chosen as
ϕωnak(rτ ) = (h̄βV )−1/2 exp (−iωnτ + ik · r)uak(r), where uak

denotes the periodic part of a Bloch wave function with a
quasi-wave-vector k and a band index a. See Sec. II B 5 for
the construction of Bloch wave functions. In this case, matrix
indices refer to (ωn, k, a). The abbreviated form of Eq. (3) is
still valid with the new interpretation of the indices.

For amorphous solids, one can nevertheless find a set of
eigenfunctions which diagonalize Ḡ. In this case, the indices
could in general be interpreted as the pair of a Matsubara
frequency and an index to the eigenfunctions.

An index with a bar (e.g., 1̄) refers to a basis which is the
time reversal of the basis referred to by the index without a
bar. For instance, for 1 → (ωn, k), 1̄ refers to (−ωn,−k).

2. Effective interaction mediated by ions

We first present a set of exact relations by which the effec-
tive interaction mediated by ions can be determined. We adopt
Matsubara’s imaginary-time formalism since we are dealing
with a finite-temperature equilibrium problem [13,14].

The first equation determines the ion-induced scattering
amplitude of a pair of electrons (a Cooper pair) with state
indices 1 ≡ (ω1, k1) and 1̄ ≡ (−ω1,−k1) scattered to 1′ and
1̄′, respectively:

�11′ = −β〈|T11′ [R(τ )]|2〉C, (5)

where �11′ denotes the pair scattering amplitude, and
T11′ [R(τ )] is the T -matrix element of electron scattering from
1 to 1′ induced by the τ -dependent ionic field with respect to
R(τ ). The average 〈. . . 〉C is over the trajectories of ions in a
classical ensemble isomorphic to the original quantum ionic
system (see Sec. II B 2) and can be evaluated in, e.g., a PIMD
simulation.

The second one is the Lippmann-Schwinger equation
which determines the T matrix:

T̂ [R(τ )] = V̂[R(τ )] + 1

h̄
V̂[R(τ )] ˆ̄GT̂ [R(τ )], (6)

where Ḡ denotes the temperature Green’s function [13] of
electrons in the normal state of the liquid, and V[R(τ )] ≡
Vei[R(τ )] − �̄ is the scattering potential, with Vei[R(τ )] be-
ing the time-dependent ionic field with respect to R(τ ) and
�̄ being the self-energy with respect to Ḡ. We note that
the scattering is relative to an effective medium defined by
Ḡ, and as a result, 〈T̂ [R(τ )]〉C = 0. We further note that
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Ḡ = 〈G[R(τ )]〉C, where G[R(τ )] is the temperature Green’s
function of electrons subjected to Vei[R(τ )].

Finally, the effective pairing interaction Ŵ , which enters
into the linearized Eliashberg equations (see Sec. II A 3) and
determines Tc, can be inferred from the pair scattering ampli-
tudes by solving a Bethe-Salpeter (BS) equation:

W11′ = �11′ + 1

h̄2β

∑
2

W12|Ḡ2|2�21′ . (7)

Equations (5)–(7) form the theoretical basis of determining
EPC for liquids. The applicability of the formalism can be
extended to general systems by properly interpreting the state
indices as indicated in Sec. II A 1. We can show that the
conventional EPC formalism [7,8] is just a limiting form of
our formalism; see Sec. II B 5.

3. Linearized Eliashberg equations

After obtaining the effective pairing interaction Ŵ , we
still need a formalism for determining Tc. In the conventional
Eliashberg theory, Tc is determined by solving the linearized
Eliashberg equations [15–17]:

ρn =
∑

n′

[
λ(n′ − n) − μ∗ − h̄β

π
|ω̃(n)|δnn′

]
n′ , (8)

ω̃(n) = π

h̄β

(
2n + 1 + λ(0) + 2

n∑
m=1

λ(m)

)
, n � 0, (9)

and |ω̃(−n)| = |ω̃(n − 1)|. A positive eigenvalue ρ indicates
an instability toward forming Cooper pairs and the supercon-
ducting state. The interaction parameters are determined by

λ(n′ − n) = −
∑

k′
Wk′k(ωn′ − ωn)δ(ε̃k′ − μ), (10)

where Wk′k(ωn′ − ωn) ≡ W1′1, where 1 ≡ (ωn, k) and 1′ ≡
(ωn′ , k′) is assumed to be a function of ωn′ − ωn, and ε̃k′

is the electron dispersion renormalized by the real part of
�̄. In the conventional theory, the Eliashberg equations are
established in a perturbative context by assuming that the
vibration amplitudes of ions are small. The assumption is
obviously not valid for liquids.

Our conclusion, simply put, is that one can still apply
the Eliashberg equations to determine Tc’s for liquids and
general systems. We can reestablish the Eliashberg equations
without resorting to the perturbative approach. In our context,
however, we have to interpret them differently. Equation (8)
is now interpreted as the equation determining the instability
toward forming the superconducting states. On the other hand,
Eq. (9) is the result of the self-energy equation

Im�̄1 = − 1

h̄β

∑
1′

W1′1ImḠ1′ , (11)

which is now interpreted as a generalized optical theo-
rem [18]. The proofs of these points are shown in Sec. II B 4.

B. Proofs

To prove the main results outlined in the last section, we
first introduce two useful theoretical apparatuses, namely, the

effective action theory (Sec. II B 1) and the exact decompo-
sition of an electron-ion coupled system (Sec. II B 2). Based
upon these preparations, the main results are established in
Secs. II B 3 and II B 4. In Sec. II B 5, we further show that our
formalism is reduced to the conventional one when applied to
ordinary solids.

1. Effective action theory

The density functional theory (DFT) dictates that the
ground-state energy (or grand potential) of an interacting
quantum system is a functional of density. The insight gives
rise to a general framework for treating interacting systems
nonperturbatively. The theory could be formally generalized
to define a grand potential as a functional of the Green’s
function. This is useful when single-particle excitations are
of interest. The construction is shown as follows.

The partition function of a general system, under the
functional-integral formalism, can be determined by [19]

Z =
∫

ψ (h̄β )=−ψ (0)

D[ψ∗, ψ] exp

(
−S[ψ,ψ∗]

h̄

)
, (12)

S[ψ,ψ∗]

≡
∫ h̄β

0
dτ [ψ∗(τ ) · (h̄∂τ − μ)ψ (τ ) + K (ψ∗(τ ), ψ (τ ))],

(13)

where we assume that particles are fermions, and ψ denotes
a Grassmann field, which fulfills the antiperiodic boundary
condition along the direction of the imaginary time ψ (h̄β ) =
−ψ (0). For brevity, we do not explicitly show the spatial
dependence of the field.

Normal systems. We then introduce an auxiliary field
J (r′τ ′, rτ ) = ∑

1 J1ϕ1(r′τ ′)ϕ∗
1 (rτ ) which conjugates to the

Green’s function and modifies the action by

SJ [ψ,ψ∗] = S[ψ,ψ∗] −
∫

dτdτ ′
∫

drdr′

× J (r′τ ′, rτ )ψ (rτ )ψ∗(r′τ ′) (14)

= S −
∑

1

J1ψ1ψ
∗
1 , (15)

where ψ1 ≡ ∫
dτ

∫
drϕ∗

1 (rτ )ψ (rτ ), with ϕ1(rτ ) being the
basis function defined in Sec. II A 1.

With SJ , we can define a partition functional Z[J]. The
temperature Green’s function in the presence of J can be
determined by a functional derivative:

G1[J] = −h̄
δ ln Z[J]

δJ1
, (16)

according to the definition of the Green’s function. The rela-
tion basically maps J to G.

By assuming the map from J to G is invertible, we can
define a grand potential as a functional of G by applying the
Legendre transformation:

�[G] = − 1

β
ln Z[J] − 1

h̄β

∑
1

J1G1

≡ − 1

β
ln Z[J] − 1

h̄β
TrĴĜ. (17)
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With the grand-potential functional, the Green’s function can
be obtained by solving the equation

h̄β
δ�[G]

δG1
= −J1. (18)

It becomes a variational principle when J = 0.
Following the procedure, it is not difficult to construct the

functional for a noninteracting system [20]:

β�0[G] = Tr ln Ĝ − Tr
[
Ĝ−1

0 Ĝ − I
]
, (19)

with Ĝ−1
0 ≡ [−∂τ + μ/h̄ + (h̄/2m)∇2]δ(τ − τ ′)δ(r − r′).

For an interacting system, one can decompose the grand-
potential functional into two parts:

�[G] = �0[G] + �LW[G], (20)

where �LW[G] is called Luttinger-Ward functional, which
accounts for interaction effects [21]. With the Luttinger-Ward
functional, we can define a self-energy functional

�[G] = −h̄β
δ�LW[G]

δG . (21)

By applying Eq. (18), we obtain a self-consistent Dyson
equation for determining G:{

Ĝ−1
0 − Ĵ + �̂[G]

h̄

}
Ĝ = I. (22)

We note that the equation is formally exact, provided that the
functional form of the self-energy is known.

More generally, we can introduce an auxiliary field
J (r′τ ′, rτ ) = ∑

1 J1′1ϕ1′ (r′τ ′)ϕ∗
1 (rτ ) which is nondiagonal in

the basis. In this case, we can also define a grand-potential
functional �[G] without assuming Ĝ to be diagonal. For this
case, the counterpart of Eq. (18) is

h̄β
δ�[G]

δG11′
= −J1′1. (23)

Superconducting systems. For treating superconducting
systems, it is necessary to further generalize the formalism.
This is to replace the Green’s function G with a 2 × 2 matrix
of Green’s functions in the Nambu representation [22]:

G1 =
[
G1 F1

F∗
1 −G1̄

]
, (24)

where we introduce an anomalous Green’s function
F (rτ, r′τ ′) = −〈T̂τ ψ̂↑(rτ )ψ̂↓(r′τ ′)〉 [13], with the subscripts
of the field operators indexing spin components. By intro-
ducing an auxiliary field (r′τ ′, rτ ) = ∑

1 1ϕ1̄(r′τ ′)ϕ1(rτ )
conjugated to F , we have

S = S −
∫

dτdτ ′
∫

drdr′

× [∗(r′τ ′, rτ )ψ↑(rτ )ψ↓(r′τ ′) + H.c.] (25)

= S −
∑

1

(∗
1ψ1↑ψ1̄↓ + H.c.). (26)

It is not difficult to repeat the above discussions to define a
grand-potential functional �[G,F]. In addition to Eq. (18),
we have

h̄β
δ�[G,F]

δF1
= −∗

1. (27)

The functional of the noninteracting reference system be-
comes

β�0[G,F] = Tr ln Ĝ − Tr
[
Ĝ −1

0 Ĝ − I
]
, (28)

where Ĝ −1
0 ≡ { − ∂τ + h̄−1[μ + (h̄2/2m)∇2]τ̂3}δ(τ − τ ′)

δ(r − r′), with τ̂3 being the third component of the Pauli
matrices.

Functional expansion, stiffness theorem, and anomalous
response function. We exploit the fact that when the temper-
ature approaches Tc, the amplitude of F must be small. As a
result, we can expand the functional as a Taylor series of F .
To the second order, the expansion has the following form:

�[G,F] = �0[G,F] + �N
LW[G]

+ 1

(h̄β )2

∑
11′

F∗
1 W11′F1′ + · · · , (29)

where �N
LW[G] ≡ �LW[G,F → 0] is the Luttinger-Ward

functional for the normal state. The coefficients are interpreted
as the effective pairing interaction and are determined by

W11′ = (h̄β )2 δ2(� − �0)

δF∗
1 δF1′

∣∣∣∣
F→0

. (30)

By applying Eq. (27), we have

h̄β
δ2�

δF∗
1 δF1′

∣∣∣∣
F→0

= − δ1

δF1′

∣∣∣∣
F→0

≡ −[χ̂−1]11′ , (31)

where we define an anomalous density response function

χ11′ = δF1

δ1′

∣∣∣∣
→0

, (32)

which is just the matrix inverse of [δ1/δF1′ ]. Equation (31)
is nothing but the stiffness theorem, which could be estab-
lished in the more general context [23].

Combining these relations, we have

Ŵ = h̄β
(
χ̂−1

0 − χ̂−1
)
, (33)

where [χ̂0]11′ = −h̄−1|Ḡ1|2δ11′ is the anomalous response
function for the noninteracting reference system with respect
to �0[G,F].

The anomalous response function can be related to a corre-
lation function in the functional-integral formalism. We have

F1 = − 1

Z

∫
D[ψ,ψ∗]ψ1↑ψ1̄↓e−S/h̄, (34)

χ11′ = −1

h̄
〈(ψ1↑ψ1̄↓ − F1)(ψ1′↑ψ1̄′↓ − F1′ )∗〉, (35)

where the average 〈. . . 〉 ≡ Z−1
∫

D[ψ,ψ∗] . . . exp(−S/h̄).
Kohn-Sham decomposition. With the formalism, we have

a formal framework for treating many-body physics nonper-
turbatively. The formalism is useful only when we know
the form of the functional. In real calculations, it is neces-
sary to adopt an approximation for the functional form. A
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sensible starting approximation is based on the Kohn-Sham
decomposition, by which the Green’s function is expressed
in terms of Kohn-Sham wave functions and eigenenergies,
just like a noninteracting system. The approach is then re-
duced to the ordinary Kohn-Sham theory. See Ref. [20] for
more information. For the EPC of a system which is not
regarded as “strongly correlated,” the approximation is usually
adequate. Actually, most modern-day first-principles calcu-
lations of EPC for ordinary solids are based on the same
approximation [8].

2. Exact decomposition of an electron-ion coupled system

To treat a system involving strongly coupled electrons and
ions, we adopt an exact decomposition which separates the
treatments of the ion and electron degrees of freedom. The ion
degrees of freedom can be simulated by the PIMD. The
electron subsystem is then mapped into a system subjected to
a stochastic time-dependent ionic field sampled by the PIMD.

The grand-canonical Hamiltonian of an electron-ion cou-
pled system can be generally written as (i.e., “the Hamiltonian
of everything”) follows:

K̂ =
∑

σ

∫
drψ̂†

σ (r)

[
− h̄2

2me
∇2

r − μ

]
ψ̂σ (r) + 1

2

∑
σσ ′

∫
drdr′ e2

|r − r′| ψ̂
†
σ (r)ψ̂†

σ ′ (r′)ψ̂σ ′ (r′)ψ̂σ (r)

︸ ︷︷ ︸
K̂e

−
Ni∑

i=1

∑
σ

∫
dr

Zie2

|r − Ri| ψ̂
†
σ (r)ψ̂σ (r)

︸ ︷︷ ︸
V̂ei

−
∑

i

h̄2

2Mi
∇2

Ri
+ 1

2

∑
i j

ZiZ je2

|Ri − R j |︸ ︷︷ ︸
Ĥi

, (36)

where K̂e is the Hamiltonian of electrons, expressed in the
second quantized form, V̂ei is the interaction between electrons
and ions, and Ĥi is the Hamiltonian of ions. For ions, we
use the first quantized form because the exchange symmetry
will be ignored in the following considerations. The partition
function of the system is determined by Z = Tre−βK̂ .

We apply the classical isomorphism [24] to the ion degrees
of freedom. This is to interpret e−βK̂ as a time evolution
operator in the interval [0, h̄β ) of the imaginary time τ ≡ it ,
divide the interval into Nb slices, and insert the closure relation∫

dR |R〉 〈R| = 1 between the slices:

Tre−βK̂ = Tr
Nb−1∏
a=0

e−τ K̂/h̄

= Tre

∫ [Nb−1∏
a=0

dR(τa)

]
Nb−1∏
a=0

〈R(τa+1) | e−τ K̂/h̄ | R(τa)〉,

(37)

where τ ≡ τa+1 − τa = h̄β/Nb, Tre denotes the trace over
electron degrees of freedom, and the trace over ion degrees of
freedom is taken care by the path integrals over R(τa) and the
periodic boundary condition R(τNb ) = R(τ0).

We can then apply the standard approximation of the
path-integral formalism to evaluate the matrix elements of
the evolution operator in a small time-interval τ [19] and
obtain [24]

Z = lim
Nb→∞

∫ [
Nb−1∏
a=1

(
mNb

2π h̄2β

)3/2

dR(τa)

]

×
{

Tre

Nb−1∏
a=1

e−τ [K̂e+V̂ei[R(τa )]]/h̄

}
e

−βHC
i [R(τ )]

(38)

≡
∫

D[R(τ )]
{
TrT̂τ e− 1

h̄

∫ h̄β

0 dτ [K̂e+V̂ei (τ )]
}
e

−βHC
i [R(τ )]

, (39)

HC
i [R(τ )] ≡ mNb

2h̄2β2

Ni∑
i=1

Nb−1∑
a=0

|Ri(τa+1) − Ri(τa)|2

+ 1

2Nb

Nb−1∑
a=1

∑
i j

ZiZ je2

|Ri(τa) − R j (τa)| . (40)

We note that Tr in Eq. (39) stands for Tre with the subscript
dropped for brevity.

In the limit of Nb → ∞, Eq. (39) is an exact decomposition
of the electron-ion coupled system except that the exchange
symmetry between ions is ignored. It decomposes the system
into a quantum electron system subjected to an imaginary-
time-dependent ionic field and a classical ensemble in which
each ion is mapped into a τ loop.

In the opposite limit of Nb = 1, the decomposition be-
comes the Born-Oppenheimer approximation, which is em-
ployed in classical molecular dynamics. All information con-
cerning the τ dependences and therefore the imaginary-time
dynamics will be lost in this limit. Since EPC is intrinsically a
dynamic process, it is essential to use the PIMD instead of the
classical molecular dynamics for extracting its information.
We emphasis that for determining equilibrium properties, one
only needs the information of the imaginary-time (as opposed
to the real-time) dynamics [13,14], which is exactly what a
PIMD is simulated for.

A PIMD simulation basically samples a classical ensemble
which is governed by the effective Hamiltonian Heff [R(τ )] =
HC

i [R(τ )] + �ei[R(τ )] with �ei ≡ −(1/β ) ln Zei, where Zei

is the expression inside the curly bracket in Eq. (39). It is
necessary to use a finite Nb in the simulation. As a result, each
quantum ion is mapped into a ring-polymer with Nb beads.
In this case, the information of the imaginary-time dynamics
is preserved in the dependences of various functions on the
discretized imaginary time or the beads. The discretization in-
evitably causes the loss of information and introduces errors.
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In circumstances, one has to find ways to control the errors.
See Sec. III A 1 for such an example.

With the decomposition, the evaluation of an electron-
related quantity becomes a two-step process: (i) calculating
the quantity in the quantum ensemble corresponding to Zei;
(ii) averaging the quantity in a PIMD simulation. For instance,
to determine the single-particle Green’s function of electrons,
we have:

Ḡ(τ, τ ′) ≡ − 1

Z
Tr
[
T̂τ ψ̂ (τ )ψ̂†(τ ′)e− 1

h̄

∫ h̄β

0 dτ K̂
]

(41)

= − 1

Z

∫
D[R(τ )]e

−β(HC
i +�ei ) 1

Zei

× TrT̂τ ψ̂ (τ )ψ̂†(τ ′)e− 1
h̄

∫ h̄β

0 dτ [K̂e+V̂ei (τ )] (42)

≡ 〈G[R(τ )](τ, τ ′)〉C, (43)

where G[R(τ )] is defined in Eq. (1), and 〈. . . 〉C denotes the
classical ensemble average over ion trajectories.

3. Effective pairing interaction

With the preparations, we are ready to establish the three
equations summarized in Sec. II A 2. From Eq. (33), we see
that to determine the effective pairing interaction W , one
needs to first determine the anomalous response function χ̂ .
By treating the electron subsystem as an effective noninter-
acting system, we can apply Wick’s theorem and obtain

χ11′ = −1

h̄
〈G11′ [R(τ )]G1̄1̄′[R(τ )]〉C. (44)

The pair scattering amplitude of Eq. (5) is defined by the
decomposition

χ̂ = χ̂0 + 1

h̄β
χ̂0�̂χ̂0. (45)

It is easy to verify that �11′ ≡ −β〈T11′ [R(τ )]T1̄1̄′[R(τ )]〉C,
with T̂ ≡ h̄ ˆ̄G−1(Ĝ[R(τ )] − ˆ̄G) ˆ̄G−1. We thus obtain Eq. (5).
It is also easy to verify that T̂ does satisfy Eq. (6). Finally,
by applying Eq. (33), it is not difficult to verify Eq. (7). It
concludes our proof.

We still need to address the effect of the Coulomb interac-
tion between electrons since the above derivation treats the
system as if it is noninteracting. The Coulomb interaction
introduces a number of revisions to our result and deriva-
tion: (i) when determining the Green’s function G[R(τ )],
one needs to introduce a self-energy functional �c[G] which
accounts for the effect of the Coulomb interaction [25] (see
Sec. II B 1). In practical calculations which employ the DFT,
the Green’s function could be interpreted as the Kohn-Sham
Green’s function with respect to an effective ionic field
V KS

ei [R(τ )], which includes both the bare ionic potential and
the screening potential induced by the self-consistent electron
density [20]. (ii) When determining the anomalous response
function in the time-dependent quantum ensemble, there
will be many-body corrections corresponding to Feynman
diagrams with at least one Coulomb interaction line (see
Fig. 19 of Ref. [22]). As argued in the conventional EPC
theory, these contributions could be absorbed into renormal-
ization constants [22]. (iii) The Luttinger-Ward functional will
have a component �

(c)
LW[G,F] contributed by the Coulomb

interaction. It gives rise to a contribution to W rising from
δ2�

(c)
LW/δF∗

1 δF1′ |G→Ḡ,F→0. Its effect could be captured by an
empirical Coulomb pseudopotential parameter μ∗ introduced
in the conventional EPC theory [22].

4. Linearized Eliashberg equations

Stiffness. To estimate Tc, we determine when a system
becomes unstable toward forming Cooper pairs. This is to
examine the stiffness matrix of the system with respect to
the variations of the anomalous Green’s function F . Because
of the stiffness theorem Eq. (31), the stiffness matrix is pro-
portional to −χ−1. Therefore, the non-negative-definiteness
of χ−1 indicates an instability toward forming Cooper pairs
and the superconducting state. By applying Eq. (33), we have
χ̂−1 = χ̂−1

0 − (h̄β )−1Ŵ . Because χ̂0 is negative-definite, the
negative-definiteness of χ̂−1 is equivalent to the requirement
that the eigenequation(

I − 1

h̄β
Ŵ χ̂0

)
̂ = ρχ̂0̂ (46)

has no positive eigenvalue ρ.
The equation can be simplified. We have [χ̂0]11′ =

−h̄−1|Ḡ1|2δ11′ , and

|Ḡ1|2 ≡ |Ḡ(ωn, k)|2 ≈ π h̄2

|ω̃(n)|δ(ε̃k − μ), (47)

where we define a renormalized electron dispersion ε̃k = εk +
Re�̄(ωn, k) by ignoring the weak ωn dependence of Re�̄, and

ω̃(n) ≡ ωn − 1

h̄
Im�̄(ωn, kF) (48)

for a wave vector kF on the Fermi surface. The approximation
is possible because h̄|ω̃(n)| is much smaller than the typical
energy scale of electrons, i.e., the Fermi energy.

We then insert the approximated form of χ̂0 into the
eigenequation and note that the resulting equation is closed for
1′ ≡ (ωn′ , k′

F) in the subspace of all wave vectors on the
Fermi surface. Because the system is isotropic, we can seek
for an eigenvector ̂ which does not depend on the direction
of k′

F. Therefore, 1′ = (ωn′ ) ≡ n′ . The eigenequation
then becomes∑

n′

[
−
∑

k′
W11′δ(ε̃k′ − μ) − h̄β

π
|ω̃(n)|δnn′

]
n′ = ρn′ .

(49)
The Coulomb pseudopotential μ∗ is then inserted by hand.
The resulting equation is exactly Eq. (8).

Generalized optical theorem. To close the equation, we
still need to determine ω̃(n). In the conventional Eliashberg
theory, the self-energy is determined by the effective interac-
tion through a perturbative equation like Eq. (11). In our non-
perturbative treatment, however, the self-energy is assumed to
be known a priori. In principle, �̄ can be determined directly
with a PIMD simulation. However, it is infeasible in practice.
This is because the accurate determination of Ḡ requires a high
resolution of the imaginary time, i.e., a large Nb in the PIMD
simulation. Inaccuracy may introduce inconsistency because
the two Eliashberg equations, in their conventional forms,
involve the same set of parameters λ(n).
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Fortunately, we are able to establish a generalized optical
theorem [18] for the imaginary part of the self-energy with
a form identical to Eq. (11). The derivation is detailed as
follows.

By applying the Dyson equation{
ˆ̄G−1 − V̂

h̄

}
Ĝ = I (50)

and the relation ˆ̄G = 〈Ĝ〉C, we have 〈V̂Ĝ〉C = 0. By inserting
the definition of V̂ and the identity Ĝ = ˆ̄G + h̄−1 ˆ̄GT̂ ˆ̄G, we
obtain

ˆ̄� = 〈V̂ei〉C + 1

h̄
〈V̂ei

ˆ̄GT̂ 〉C. (51)

We make further manipulations,

〈V̂ei
ˆ̄GT̂ 〉C = 〈(V̂ei − �̂†) ˆ̄GT̂ 〉C = 〈V̂† ˆ̄GT̂ 〉C

=
〈
T̂ † ˆ̄GT̂ − 1

h̄
T̂ † ˆ̄G†(V̂ei − ˆ̄�†) ˆ̄GT̂

〉
C

, (52)

where, in the first line, we make use of 〈T̂ 〉C = 0, and from
the first line to the second line, we apply Eq. (6) to replace V̂†

with V̂† = T̂ † − h̄−1T̂ † ˆ̄G†V̂†. By noting that V̂ei is Hermitian
and Ḡ and �̄ are diagonal in a liquid, we have

Im�̄1 = 1

h̄
[Im〈V̂ei

ˆ̄GT̂ 〉C]11

= 1

h̄

∑
1′

〈
T ∗

1′1(ImḠ1′ )T1′1 − 1

h̄
T ∗

1′1Ḡ∗
1′ (Im�̄1′ )Ḡ1′T1′1

〉
C

= − 1

h̄β

∑
1′

[
ImḠ1′�1′1 − 1

h̄
Im�̄1′ |Ḡ1′ |2�1′1

]
, (53)

where we make use of Eq. (5). In the matrix form, the equality
can be written as

Im ˆ̄� = − 1

h̄β
(Im ˆ̄G)�̂ − 1

h̄β
(Im ˆ̄�)χ̂0�̂. (54)

We then have

Im ˆ̄� = − 1

h̄β
(Im ˆ̄G)

[
�̂

(
I + 1

h̄β
χ̂0�̂

)−1
]

(55)

= − 1

h̄β
(Im ˆ̄G)Ŵ , (56)

where we make use of the matrix form of Eq. (7) Ŵ = �̂ −
(h̄β )−1Ŵ χ̂0�̂. The final form is exactly the matrix form of
Eq. (11). By inserting Eq. (11) into Eq. (48), we obtain Eq. (9).

We note that there is no simple relation like Eq. (11)
for Re�. Fortunately, Re� is dominated by 〈V̂ei〉C, and the
correction due to EPC is usually small and negligible (see
Fig. 3).

5. Reducing to the conventional EPC theory

The conventional EPC theory deals with crystalline solids
and assumes that the vibration amplitudes of ions are small.
In the lowest order, the ions could be regarded to be fixed in
their respective equilibrium lattice positions {R0

i }. As a result,

the self-energy �̄ can be approximated as

�̄ ≈ V (0)
ei ≡ Vei

({
R0

i

})
. (57)

One expects that the vibrations of ions will introduce a
correction to the self-energy, i.e., the EPC correction to the
self-energy. Since the vibration amplitudes are small, the
correction is expected to be small.

One can then determine a set of Bloch wave functions
ϕak ≡ V −1/2 exp(ik · r)uak(r) by solving the Schrödinger
equation in the presence of V (0)

ei , where k is a quasi wave
vector and a is a band index. The average Green’s function
will be approximately diagonal in the basis

Ḡ11′ = Ḡ1δ11′ + Ḡ11′ , (58)

where the indices 1 and 1′ correspond to the combinations
of (ωn, k, a), and Ḡ11′ denotes a small correction due to the
vibrations of ions. By inspecting Eqs. (6), (7), and (11), we
find that the correction Ḡ11′ can be ignored, since in these
equations the Green’s function is always multiplied by small
quantities like V and W .

The scattering potential can then be approximated as

V̂ ≡ V̂ei − ˆ̄� (59)

≈ V̂ei({Ri}) − V̂ei
({

R0
i

})
(60)

≈
∑
iακ

∂V̂ei

∂Riακ

∣∣∣∣
{R0

i }
uiακ , (61)

where i, α, κ are indices of unit cells, axis directions, and sub-
lattices, respectively, and uiακ ≡ Riακ − R0

iακ is the displace-
ment of an ion. We know from the conventional EPC theory
that the correction to �̄ due to ion vibrations is proportional
to |V|2, and is thus negligible.

The displacements of ions can be expressed in terms of
phonon annihilation and creation operators âqν , â†

qν . The
scattering potential can then be written as (see Eq. (32) of
Ref. [8])

V̂ = 1√
Ni

∑
qν

qνV̂ei(âqν + â†
−qν ), (62)

where qνV̂ei is defined in Ref. [8] (as qνV KS).
Since V̂ is a small quantity, we can apply the Born ap-

proximation to Eq. (6) and obtain T̂ ≈ V̂ . The matrix ele-
ments of T̂ with respect to the basis function ϕωnak(rτ ) =
(h̄βV )−1/2 exp (−iωnτ + ik · r)uak(r) are

T11′ = 1√
V

gaa′ν (k′, q)δk,k′+q

× 1

h̄β

∫ h̄β

0
dτ [âqν (τ ) + â†

−qν (τ )]e−i(ωn−ωn′ )τ , (63)

with the electron-phonon matrix element gaa′ν (k′, q) defined
in Eq. (38) of Ref. [8].

By applying Eq. (5), and noting that the path-integral
average 〈. . . 〉C is equivalent to a time-ordered average of
operators [19], we obtain

�11′ = 1

V
δk,k′+q|gaa′ν (k′, q)|2Dν (q, ωn), (64)
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where the phonon Green’s function is

D(q, ωn) = −1

h̄

∫ h̄β

0
dτ 〈T̂τ Âqν (τ )Â†

qν (0)〉eiωnτ , (65)

with Âqν ≡ âqν (τ ) + â†
−qν (τ ).

We then apply the Born approximation to the BS equa-
tion (7) and have Ŵ ≈ �̂, i.e., Eq. (64) is the effective interac-
tion induced by EPC. The result should be compared with its
counterpart in the conventional EPC theory: see, for instance,
Eq. (7.276) of Ref. [14], in which the electron-phonon matrix
element is denoted as Mλ(q). It is easy to see that the two are
equivalent.

III. NUMERICAL IMPLEMENTATION
FOR METALLIC HYDROGEN

Based on the formalism Eqs. (5)–(10), we can develop a
scheme for estimating Tc. For samples of ion trajectories from
a PIMD simulation [3], T matrices are determined by solving
Eq. (6). The pair scattering amplitude is determined from the
fluctuation of the T matrices by applying Eq. (5). The effective
pairing interaction is obtained from the scattering amplitude
by solving Eq. (7). The interaction parameters λ(n) are evalu-
ated by using Eq. (10). The linearized Eliashberg equations (8)
and (9) are then solved, and the maximal eigenvalue ρm of the
equations is determined. With ρm, we can determine whether
the temperature of the PIMD simulation is below (ρm > 0) or
above (ρm < 0) Tc [15,16]. By varying the PIMD simulation
temperature, Tc can be estimated from the condition ρm = 0.
The procedure is detailed in Sec. III A.

To make the scheme practical for real calculations, we
adopt the quasistatic approximation. This is to treat the
scattering potential V̂ (τ ) as a static potential, and we solve
Eq. (6) to obtain a τ -dependent T matrix T̂Ns (τ ) in the elastic
limit by setting the frequency of Ḡ to ωNs ≡ (2Ns + 1)π/h̄β,
where Ns is a large integer satisfying ωph � ωNs � εF/h̄,
with ωph being the scale of phonon frequencies and εF the
Fermi energy of electrons. The T matrix is then approximated
as T̂ (ωNs + νm, ωNs ) ≈ (1/h̄β )

∫ h̄β

0 dτ T̂Ns (τ )eiνmτ for νm ≡
2mπ/h̄β, m ∈ Z . We can show that the quasistatic approx-
imation becomes exact in the limit of ωNs � ωph. With the
approximation, we can determine effective pairing interaction
matrix elements Ŵ (ωNs + νm, ωNs ). Physically, one expects
that Ŵ (ωn + νm, ωn) is close to Ŵ (ωNs + νm, ωNs ) as long
as |ωn − ωNs | � εF/h̄. As a result, the effective pairing in-
teraction can be determined by assuming Ŵ (ωn + νm, ωn) ≈
Ŵ (ωNs + νm, ωNs ). See Sec. III B for details.

For metallic hydrogen, we use the linear screening ap-
proximation for calculating the effective ionic potential for a
given ionic configuration: Vei(q) ≈ vei(q)ρi(q)/εet (q), where
vei(q) is the Coulomb interaction between an electron and
an ion, ρi(q) ≡ ∑

i exp(−iq · Ri ), and εet (q) is the static
electron-test charge dielectric function [23] with Ichimaru and
Utsumi’s local field correction factor [26]. Compared to the
self-consistent Kohn-Sham potential determined by the DFT,
the approximation is only a few percent off, as shown in the
inset of Fig. 5. The precision is sufficient for implementing
and testing a new approach.

A. Numerical implementation

We implement our scheme as an add-on to existing PIMD
simulations. We first run a PIMD simulation which outputs
samples of ion trajectories. Each sample of the ion trajec-
tories contains a set of coordinates {Ri(τa), i = 1 . . . Ni, a =
1 . . . Nb}, where Ni is the total number of ions, and Nb is the
number of beads discretizing the imaginary time [24]. The
output then serves as the input of a program implementing
our scheme.

Our PIMD simulations are performed as in Ref. [3] using
the Vienna ab initio Simulation Package (VASP) code [27,28],
along with an implementation of the PIMD method used in
Ref. [29]. For metallic hydrogen, the implementation yields
quantitatively the same results as the one used in Ref. [3] but
with improved sampling efficiency. The electronic structure
was described “on the fly” using DFT. Projector augmented
wave (PAW) potentials along with a 500-eV energy cutoff
were employed for the expansion of the electronic wave func-
tions [30,31]. The Perdew-Burke-Ernzerhof (PBE) functional
was used to describe the electronic exchange-correlation in-
teraction [32]. The liquid state was modeled with a supercell
containing 200 atoms, and a Monkhorst-Pack k-point mesh
of spacing no larger than 2π × 0.05 Å was used to sample
the Brillouin zone. The ab initio PIMD simulations were
performed at 350 and 450 K with pressures ranging from 0.5
to 1.5 TPa. The Andersen thermostat was chosen to control
the temperature of the canonical (NVT) ensemble [33], in
which the ionic velocities were periodically randomized with
respect to the Maxwellian distribution every 25 fs. No less
than 1.5 ps simulation length with Nb = 24 were used to
evaluate the quantum fluctuation.

Our program for analyzing PIMD outputs is implemented
in MATLAB. Figure 1 shows the flowchart of the program. The
program determines whether a PIMD simulation temperature
is below or above Tc. To estimate Tc, one needs to run PIMD
simulations at (at least) two different temperatures, between
which the maximal eigenvalue ρm of the linearized Eliashberg
equations (8) and (9) changes sign. Tc is estimated by a linear
interpolation from the two temperatures [34]. In the following,
we demonstrate our analyses by using the case of P = 0.7 TPa
and T = 350 K as an example.

1. Density correlation function

In a PIMD, the density correlation function can be decom-
posed into two parts, including the self-correction function
ω(q, νm) and the direct correlation function h(q, νm):

χi(q, νm) = −βρ0[h(q, νm) + ω(q, νm)], (66)

where ρ0 is the density of ions, and the definitions of the
various correlation functions can be found in Ref. [24]. The
self-correlation function is where the quantum effect is mani-
fested.

To numerically evaluate the correlation functions, we first
determine for each sample of the ion trajectories:

ρ̃i(q, νm) = 1

Nb

Nb∑
a=1

e−iq·Ri (τa )+iνmτa , (67)

ρi(q, νm) =
Ni∑

i=1

ρ̃i(q, νm). (68)
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FIG. 1. Flowchart of the program for analyzing PIMD outputs. N denotes the maximal value of n when solving Eq. (8). The linear screening
approximation, which should be replaced in a full implementation, is indicated by the red box.

The density correlation function χi(q, νm) and the self-
correction function ω(q, νm) can then be determined by

χi(q, νm) = −βρ0

Ni
〈|ρi(q, νm) − 〈ρi(q, νm)〉C|2〉C, (69)

ω(q, νm) =
〈

1

Ni

Ni∑
i=1

|ρ̃i(q, νm)|2
〉

C

. (70)

The direct correlation function h(q, νm) can be determined by
applying the identity Eq. (66).

The finite number of the beads introduces discretization er-
rors in the determination of the correlation functions. It is the
self-correlation function which is prone to the discretization
errors. This can be seen in the self-correlation function of a
free system [35]:

ω0(q, τ ) = exp

[
−1

2
(qλe)2 τ

h̄β

(
1 − τ

h̄β

)]
, (71)

which becomes a sharp function of τ when q is large and
cannot be accurately sampled by a small number of Nb beads.

To solve the issue, we apply an oversampling approach.
A simulation of Nb beads will give rise to a discrete set of
values of {ω(q, τa), a = 1 . . . Nb}. We exploit the property
that ln ω(q, τ ) is a smooth function of τ , and oversample
it by interpolating from its discrete set of values. The
resulting ω(q, τ ) can then be Fourier transformed to obtain
an oversampled self-correlation function ω(o)(q, νm). By
replacing ω(q, νm) with ω(o)(q, νm) in Eq. (66), we can get an

oversampled density correlation function χ
(o)
i (q, νm), which

will be used in determining the interaction parameters (see
Sec. III A 5). The correlation functions of ions are shown in
Fig. 2.

FIG. 2. Various correlation functions of ions. For the density cor-
relation function and the self-correlation function, both the original
one (blue) and oversampled one (red) are shown. The data uncertain-
ties are estimated from the fluctuation of values for the same q but
different q’s, and indicated by vertical lines extended from/to ±1
standard deviation. The oversampling is with an increased number
of beads N ′

b = 16Nb. kF is the Fermi wave vector.
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FIG. 3. The imaginary and real parts of the self-energy �̄. It is
evaluated in the quasistatic limit with Ns = 16.

2. Lippmann-Schwinger equation

We solve the Lippmann-Schwinger equation (6) in the
plane-wave basis by imposing an energy cutoff of 30 Ry. With
the quasistatic approximation (see Sec. III B), the T matrix
with respect to the vacuum can be obtained by

T̂0(τ ) = [
I − V̂ei(τ )Ĝ0

(
ωNs

)]−1
V̂ei(τ ), (72)

where [Ĝ0(ωNs )]k1,k2 = (iωNs + μ/h̄ − h̄k2
1/2me)−1δk1,k2 , and

V̂ei(τ ) is the effective ionic potential at the imaginary time τ .
The average Green’s function can be obtained by applying the
relation

ˆ̄G
(
ωNs

) = Ĝ0
(
ωNs

) + 1

h̄
Ĝ0
(
ωNs

)〈 1

Nb

Nb∑
a=1

T̂0(τa)

〉
C

Ĝ0
(
ωNs

)
.

(73)
The self-energy �̄(ωNs ) can be determined from Ḡ(ωNs ) and
is shown in Fig. 3. A linear fitting to the real part of the self-
energy for |k − kF | < 0.1kF shows that the renormalization
to the Fermi velocity is only ∼1.8%. It is ignored in our
calculation of the interaction parameters.

The T matrix with respect to the effective medium can then
be determined by

T̂Ns (τ ) = [
I − V̂ (τ ) ˆ̄G

(
ωNs

)]−1V̂ (τ ), (74)

with V̂ (τ ) ≡ V̂ei(τ ) − ˆ̄�. By applying the quasistatic approx-
imation [see Eq. (81)] and Eq. (5), we are able to determine
the pair scattering amplitude. The result is shown in Fig. 4.

3. Bethe-Salpeter equation

The effective pairing interaction can be obtained by solving
the BS equation in the quasistatic limit. The effective pairing
interaction at τ is determined by

Ŵ (τ ) =
[

I + 1

h̄β
�̂(τ )χ̂0

(
ωNs

)]−1

�̂(τ ), (75)

where �̂(τ ) is the Fourier transform of �̂(νm), and χ̂0 is a
diagonal matrix with elements −h̄−1|Ḡ(ωNs , k)|2. The effec-
tive interaction Wk1k2 (νm) can then be obtained by a Fourier

FIG. 4. Scattering amplitude and the effective pairing interac-
tion. Left: the values of �k1k2 (νm ) recast as a function of q ≡
|k1 − k2| for 0.9kF < |k1|, |k2| < 1.1kF are shown as blue dots, and
the values of Wk1k2 (νm ) are shown as red dots. The red solid lines
show the fitting to the model Eq. (77). Right: residues of the fitting
by using Mm(q) shown in the inset of Fig. 5.

transform,

Ŵ (νm) = 1

h̄β

∫ h̄β

0
dτŴ (τ )eiνmτ , (76)

where νm ≡ 2πm/h̄β is a bosonic Matsubara frequency.
Because |Ḡ|2 is a function which sharply peaks at the

Fermi surface, the equation can be solved in a truncated
space span by bases with wave vectors close to the Fermi
surface. In our calculation, we set a truncating condition
0.5kF < |k| < 1.5kF . We numerically confirm that varying
the truncating condition does not affect results. The effective
pairing interaction is shown in Fig. 4.

4. Effective EPC matrix element

From Fig. 4, we observe that the effective pairing in-
teraction vanishes at q → 0 and peaks at q ∼ 2kF. Similar
behaviors are also observed in the density correlation function
shown in Fig. 2. It suggests that the effective pairing interac-
tion could be fitted by the relation

Wk1k2 (νm) = |Mm(q)|2χi(k1 − k2, νm), (77)

with q ≡ |k1 − k2|, and Mm(q) is interpreted as an effective
EPC matrix element. We carry out the fitting by assum-
ing Mm(q) = fm(q)vei(q)/εet (q), with fm(q) being a smooth
function of q. The smooth function is chosen to be an
interpolation function of five control points at q/2kF =
{0.2, 0.5, 0.75, 0.8725, 1}. The values of the scaling function
at these points are treated as fitting parameters. The resulting
scaling functions are shown in the inset of Fig. 5. The residues
of the fitting are shown in the right panel of Fig. 4. It is evident
that the relation fits the numerical results remarkably well.

A good fitting to Eq. (77) is an indication of the sound-
ness of our numerical implementation and formalism. This
is because the existence of such a relation, while expected
physically, is nowhere near an obvious result from our
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FIG. 5. Effective pairing interaction Wm(q) with Ns = 16, m =
0, 1, 2, and q ≡ |k1 − k2| with 0.9kF < |k1|, |k2| < 1.1kF for a
metallic hydrogen liquid at P = 700 GPa and T = 350 K. The cal-
culation is based on a PIMD simulation of 200 hydrogen atoms
and 6503 samples of ion trajectories with the imaginary time dis-
cretized to 24 beads [3]. The scatter points and error bars show
the averages and standard deviations of Wm(q) with the same q
but different k1’s and k2’s. The solid lines show fittings to the
model Wm(q) ∼ |Mm(q)|2χi(νm, q). Inset: the ratio fm(q) between the
effective EPC matrix elements Mm(q) and the screened electron-ion
potential vscr.

ei ≡ |vei(q)/εet (q)| (solid lines). The scatter points show
the ratios between the effective ionic potential determined from the
DFT and that from the linear screening approximation, obtained by
averaging over 1455 ionic configurations randomly sampled from the
PIMD simulation.

formalism. Since it takes many intermediate steps to obtain
the effective pairing interaction numerically (see Fig. 1), it
is unlikely that a relation like Eq. (77) could emerge from
numerical results had inconsistency or inaccuracy existed in
any of the intermediate steps.

5. Interaction parameters

We determine the interaction parameters λ(n) by using
Eq. (10) with the effective pairing interaction determined by

W (o)
m (q) = |Mm(q)|2χ (o)

i (q, νm), (78)

where χ
(o)
i (q, νm) is the oversampled density correlation func-

tion determined in Sec. III A 1. The oversampling is necessary
to eliminate the discretization errors and to yield a correct
asymptotic behavior of λ(n) in the large-n limit. Figure 6
shows the dependence of n2λ(n) on n. Without the oversam-
pling, the values of n2λ(n) keep increasing with n. With the
oversampling, n2λ(n) saturates at large n as expected [16].
The saturation value yields an estimate of the average phonon
frequency ω̄2 = limn→∞(2π/h̄β )

√
n2λ(n)/λ, which enters

into the Eliashberg equations by renormalizing μ∗ when the
equations are solved with a large-n cutoff [16]. We take
the recovery of the correct asymptotic behavior of λ(n) as
an indication of the soundness of our oversampling scheme
discussed in Sec. III A 1.

FIG. 6. The values of n2λ(n) as a function of n. Both the val-
ues determined from the original effective pairing interaction (blue
circles) and the oversampled one W (o)

m (q) (red squares) are shown.

B. Quasistatic approximation

An important approximation we adopt to simplify the
calculation is the quasistatic approximation. Directly solving
Eqs. (5)–(7) is numerically challenging. For instance, to solve
Eq. (6) with a moderate setting of cutoffs, one may need ∼105

frequency-wave-vector bases. Even worse, the solution may
not have necessary accuracy because it is difficult to evaluate
Ḡ(ωn) accurately in a PIMD simulation with a relatively
small Nb.

Fortunately, directly solving these time-dependent equa-
tions is not necessary. We can exploit the fact that ions
move much slowly than electrons. As a result, the scattering
potential V̂ (τ ) only has a few non-negligible low-frequency
components. The resulting T matrix will be dominated by
its frequency-diagonal components T̂nn ≡ T̂ (ωn, ωn), and the
amplitudes of off-diagonal components T̂mn with |ωm − ωn| �
ωph are negligible. For Eq. (6), we have

T̂mn = V̂m−n + 1

h̄
V̂m−n′ Ḡn′ T̂n′n, (79)

≈ V̂m−n + 1

h̄
V̂m−n′ ḠnT̂n′n, (80)

where the subscripts denote frequency components. The
relative error induced by the approximation is propor-
tional to |ωn − ωn′ |/ωn and becomes negligible when ωn �
|ωn − ωn′ | ∼ ωph.

To solve the approximated equation, we choose n to be
a large integer Ns such that ωph � ωNs � εF/h̄. The big
disparity of the energy scales of electrons and phonons means
that we can always have such a choice. The equation can be
conveniently solved in the time domain:

T̂ (νm + ωNs , ωNs ) = 1

h̄β

∫ h̄β

0
dτ T̂Ns (τ )eiνmτ , (81)

T̂Ns (τ ) = V̂ (τ ) + 1

h̄
V̂ (τ )ḠNs T̂Ns (τ ), (82)
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TABLE I. Mass enhancement factor λ ≡ λ(0), average phonon frequency ω̄2 (in meV), and the maximal eigenvalue ρm of the linearized
Eliashberg equations, calculated for a number of temperatures and pressures P (in TPa). ω̄2 is estimated by applying the asymptotic relation
ω̄2 = limn→∞(2π/h̄β )

√
n2λ(n)/λ [16]. Negative values are indicated by underlined numbers. Numerical uncertainties are estimated by shifting

the values of Wm(q) up/down by a standard deviation simultaneously for all the discrete q values, and indicated in parentheses. Tc is estimated
from the linear interpolation of ρm. We adopt μ∗ ≈ 0.089 for the Coulomb pseudopotential [5]. The band renormalization is found to be
negligible for metallic hydrogen.

rs 1.226 1.197 1.17 1.149 1.113 1.049
P 0.5 0.6 0.7 0.8 1.0 1.5

λ 9.4(14) 8.5(11) 8.3(10) 6.9(9) 5.9(8) 4.8(4)
350 K ω̄2 108(13) 116(13) 116(16) 129(13) 140(21) 167(26)

ρm 0.40(12) 0.38(11) 0.32(10) 0.30(8) 0.29(11) 0.21(9)

λ 7.4(13) 7.2(10) 7.2(11) 6.1(9) 5.2(7) 4.3(3)
450 K ω̄2 121(27) 120(18) 121(19) 147(19) 156(20) 179(20)

ρm 0.06(12) 0.08(9) 0.31(8) 0.08(10) 0.12(8) 0.15(6)

Tc (K) 437(27) 433(22) 401(15) 429(25) 421(24) 408(19)

where νm ≡ 2πm/h̄β is a bosonic Matsubara frequency.
T̂Ns (τ ) can be obtained for each τ by solving an elastic
Lippmann-Schwinger equation by treating V (τ ) as if it is
a static potential. We call the approximation a quasistatic
approximation. By inserting the solution into Eq. (5) and
averaging all ionic configurations, we can obtain a scattering
amplitude �Ns (νm) ≡ �(νm + ωNs , ωNs ).

To solve the BS equation (7), we also apply the quasistatic
approximation. This is to approximate the equation as

Ŵ
(
νm + ωNs , ωNs

) ≈ �̂Ns (νm) + 1

h̄2β

∑
m′

�̂Ns (νm − νm′ )

× ∣∣ ˆ̄GNs

∣∣2Ŵ (
νm′ + ωNs , ωNs

)
. (83)

The resulting equation can then be solved in the time domain
in a similar way as Eq. (81) (see Sec. III A 3).

It is reasonable to expect that the effective interaction
W (νm + ωn, ωn) is close to W (νm + ωNs , ωNs ) as long as
h̄|ωn − ωNs | � εF:

W (ωn + νm, ωn) ≈ W
(
νm + ωNs , ωNs

)
. (84)

It suggests that in the regime of interest with |ωn|, |ωn′ | �
εF/h̄, the effective interaction Ŵ (ωn, ωn′ ) is approximately a
function of ωn − ωn′ and can be determined in the quasistatic
limit.

We note that a similar approximation, i.e., treating V̂ei(τ )
as a static potential, is also adopted by PIMD simulations
when determining atomic forces. It is customary to call the
approximation as an “adiabatic approximation.” Since the par-
ticular approximation does not prevent us from determining
the τ dependences of various physical quantities, it does not
affect the determination of EPC in an equilibrium system.
To avoid confusion, we call the approximation a “quasistatic
approximation,” since it is known that EPC is intrinsically
nonadiabatic and cannot be determined by an adiabatic ap-
proximation. The term “adiabatic approximation” is reserved
only for the Born-Oppenheimer approximation employed by
the classical molecular dynamics (see Sec. II B 2).

C. Results

1. Metallic hydrogen

We summarize the result for the case of P = 0.7 TPa
and T = 350 K in Fig. 5. The effective pairing interaction
matrix elements Wk1k2 (ωNs + νm, ωNs ) are recast as a func-
tion Wm(q) with q ≡ |k1 − k2| for k1’s and k2’s close to
the Fermi surface. The finiteness of the supercell of the
PIMD simulation means that Wm(q) is defined for only a
discrete set of q values. To this end, it is reasonable to
assume that Wm(q) is a smooth function of q and can be
interpolated from the discrete set of values. The effective
EPC matrix element Mm(q) is determined and shown in the
inset. As opposed to the earlier theoretical effort [6], the ef-
fective EPC matrix element can now be determined from first
principles.

We carry out PIMD simulations, determine the interaction
parameters, and solve the Eliashberg equations for metallic
hydrogen under a number of pressures and at T = 350 and
450 K. The results are summarized in Table I. Based on
the results, Tc’s are estimated by linearly interpolating the
values of ρm between the two calculated temperatures. For

FIG. 7. Radial pair distribution function g(r) for deuterium at
P = 1 TPa. The functions for both T = 250 K (black solid line) and
T = 300 K (red dashed line) are shown.

013340-12



SUPERCONDUCTING TRANSITION TEMPERATURES … PHYSICAL REVIEW RESEARCH 2, 013340 (2020)

FIG. 8. n2λ(n)/λ vs n for both metallic hydrogen (black squares)
and metallic deuterium (black diamonds) at T = 350 K and P =
1 TPa. For comparison, the deuterium data are also shown scaled
(red diamonds) by factors

√
2 and 2.5 along the x and y directions,

respectively.

pressures ranging from 0.5 to 1.5 TPa, they are close to
400 K, well above the melting temperatures determined in
both Refs. [3,4].

2. Metallic deuterium and isotope effect

A test to our approach is to see whether it predicts the
isotope effect as expected. For the purpose, we carry out
PIMD simulations for metallic deuterium at P = 1 TPa. The
simulations are performed at 250, 300, and 350 K for a
time interval of 5 ps. The radial pair distribution function
(RDF) g(r) is calculated. As shown in Fig. 7, the RDF for
T = 250 K shows sharp peaks, which indicate a solid state.
At T = 300 K, the sharp peaks after the first one become
broad humps, which suggests a liquid state. We thus conclude
that the melting temperature for deuterium at P = 1 TPa is
between 250 and 300 K.

We analyze the PIMD data. Figure 8 shows a comparison
between results for hydrogen and deuterium. For the relation
of n2λ(n)/λ vs n shown, the isotope effect predicts that the

two traces would collapse into one if the deuterium data are
scaled by factors

√
2 and 2 along the x and y directions,

respectively. In the plot, we see that the respective factors
are

√
2 and 2.5. For deuterium, we determine h̄ω̄2 ≈ 93 ±

9 meV, while for hydrogen h̄ω̄2 ≈ 140 ± 21 meV (Table I).
The ratio between the two is also close to

√
2, predicted by

the isotope effect.
To estimate Tc, we analyze PIMD data at 300 and 350 K.

The maximal eigenvalues of the Eliashberg equations are
−0.06 ± 0.08 and −0.30 ± 0.05, respectively. It indicates
that Tc is lower than 300 K. An estimate by extrapolation
yields Tc ≈ 288 K for deuterium, close to the prediction of
the isotope effect 421 K/

√
2 ≈ 298 K.

IV. SUMMARY

In summary, we have developed a nonperturbative ap-
proach for calculating Tc’s of liquids. The approach could
be implemented as a first-principles tool of searching for
EPC superconductivity in liquids. It predicts that a metallic
hydrogen liquid is a superconducting liquid at room temper-
ature. Experimentally, it implies that metallic hydrogen could
be detected by measuring the diamagnetism induced by the
Meissner effect.

Our approach can also be applied to more general systems
such as (anharmonic) solids. The numerical implementation
shown in this paper, however, is preliminary and applicable
for metallic hydrogens for which the linear screening approx-
imation is satisfactory. For the more general systems, it is
desirable to eliminate the linear screening approximation and
determine the ionic fields from first principles. This work is
still ongoing.
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