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Using path-integral Monte Carlo sampling and a lattice Wannier function based effective Hamiltonian obtained
from first principles, we show that the quantum fluctuations of the nuclei play a central role in the paraelectric
phase of BaFe12O19 at low temperatures (T ’s). Contribution from the geometrical frustrations, on the other hand,
is negligible. The T dependence of the dielectric function and the displacements of the Fe ions reported in
previous experiments were reproduced. The nature of the quantum paraelectrics (QPEs) was assigned to order-
disorder or displacive, using the relative magnitudes of the on-site/intersite energies of the electric dipoles, and
the quantum fluctuations of the nuclei in the path-integral samplings. This study provides a unified atomic-level
picture of QPEs, which could be used to understand different experiments in which new QPE materials were
found.
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I. INTRODUCTION

The quantum paraelectric (QPE) phase is a state of matter
in which the long-range order of the electric dipoles, induced
by the mechanical instability of its high-symmetry phase, is
prevented by the quantum fluctuations of the nuclei when the
temperature (T ) approaches 0 K [1]. It is a phenomenon that
is qualitatively different from the conventional paraelectric
(PE) phase, which undergoes a PE to ferroelectric (FE) phase
transition upon cooling, when the thermal fluctuations of the
nuclei cannot resist the long-range ordering of the electric
dipoles. As a result, the PE-FE phase transition is absent in
QPEs and the dielectric constant becomes independent of T
at low T ’s.

Since the first experimental discovery of QPEs in SrTiO3

[2], discussions about their properties, such as the dielectric
constant, the structural phase transitions, and their interactions
with electronic correlation effects, have continued [1,3–6].
But in comparison with other quantum phases of matter, e.g.
superconductors, such follow-up studies are very rare, mainly
due to the lack of examples.

Recently, M-type hexaferrite BaFe12O19 has received much
research attention because of its nontrivial electric and mag-
netic polarization behaviors [7–11]. Since its discovery in the
1950s, this material has been commercially and technologi-
cally important due to its ferrimagnetic properties [7,12].

According to space group symmetry (P63/mmc), it has
a magnetoplumbite-type structure with Fe ions located in
the Fe-O tetrahedral (TET), octahedral (OCT), and trigonal
bipyramidal (TBP) sites [Fig. 1(a)]. Many experiments, how-
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ever, including those on the Mössbauer spectrum [13,14],
x-ray diffraction [15], and neutron diffraction [8,16], show
noticeable displacements of Fe ions in the Fe-O TBP site from
the center of the mirror plane of the TBP site (2b site) to the
two adjacent tetrahedral sites (4e site) located along the c-axis,
as shown in Fig. 1(a).

To address this puzzle, Wang et al. calculated the displace-
ments of Fe ions in the TBP sites along z using first-principles
geometry optimizations in 2014, and they predicted that it
could be a multiferroic material with the possible coexistence
of a ferrimagnet and antiferroelectricity (AFE) [9].

Recent experiments, however, have shown that the dielec-
tric constants are saturated at low-T ’s [10], and the long-
range-ordered AFE state is absent. Inspired by the triangular
nature of the BaFe12O19 layer, in a subsequent paper of
Ref. [10], Shen et al. proposed that BaFe12O19 is possibly a
quantum electric-dipole liquid, and geometrical frustrations of
the AFE coupling play a central role in inducing this nontrivial
state [11].

The AFE coupling of this material, however, is very dif-
ferent from the conventional anti-parallel coupling between
neighboring sites in the geometrically frustrated quantum
systems. The saturation of the dielectric constant at low T
also shares a strong similarity to QPEs. Therefore, theoretical
simulations at finite T are needed to clarify the atomic-level
details of what is happening in this material upon cooling. To
the best of our knowledge, such a theoretical study has not
been done yet due to some challenges to standard methods.
For example, very large supercells are needed to properly
describe the long-range interactions between polarized unit
cells and to ensure that the thermodynamic limit is reached,
which makes direct ab initio simulations impractical.

Static calculation methods (such as geometry optimiza-
tion) are incapable of addressing the effects of finite-T
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FIG. 1. (a) Crystal structure of BaFe12O19. Green balls denote
Ba ions, yellow balls denote Fe ions, and red balls denote O ions.
(b) Phonon spectrum of BaFe12O19 calculated by the first-principles
calculations using PBE+U. (c) A comparison between the potential
energy surface (PES) obtained from our model Hamiltonian (solid
lines) and from DFT (markers) calculations. PESs along different
high-symmetry k-points were denoted by different markers, and the
results calculated along the same k-points by the model and DFT
were represented by the same color.

thermal/quantum fluctuations, and Monte Carlo or molecular
dynamics with sufficient sampling are needed. When the
quantum fluctuations are important, the quantum nature of the
nuclei is also important.

In this article, we studied the electric polarization behav-
iors of BaFe12O19 using a combination of the path-integral
Monte Carlo (PIMC) method and an effective lattice Hamil-
tonian method, with the difficulties mentioned above fully
accounted for. This Hamiltonian is constructed by a set of
local modes called lattice Wannier functions, using a scheme
suggested by Íñiguez et al. [17], which is numerically as
accurate as density-functional theory (DFT) and computation-
ally as efficient as the force-field method. In so doing, we
can employ supercells containing tens of thousands of atoms
to compute the T dependence of the dielectric constant and
address the competition between the thermal and quantum
fluctuations of the nuclei at finite T in a very clean manner.

Our simulations reproduced the plateau of the dielectric
constant versus T curve, and proved that the quantum fluc-
tuations of the nuclei are responsible for this plateau at low T
in BaFe12O19, meaning that it is a QPE material. The influence
of geometry frustration on the dielectric constant, on the other
hand, is only of minor importance.

Besides these, we also explained the displacements of
Fe ions in the TBP sites observed in experiments such as
the Mössbauer spectrum and neutron/x-ray diffractions, as a
result of the order-disorder-type nature of this paraelectric ma-
terial. The on-site energy of the electric dipoles dominates in
the energy term of the effective lattice Hamiltonian. Quantum
fluctuations of the nuclei can wash out the long-range order
of the electric dipoles, but the local moment holds. As such,
the crystal possesses a P63/mmc symmetry and a QPE phase
at low T by statistical average, but the distribution of the Fe
ions has peaks that deviated from the mirror plane of TBP to

the two adjacent tetrahedral sites (4e site) located along the
c-axis.

Already in the 1970s, a theoretical analysis on how an
ordered ferroelectric phase was suppressed by quantum fluc-
tuations had been given in a cubic ferrodistortive model [18],
with a focus on the displacive QPEs. Following a similar
idea, we performed a systematic investigation into how QPEs
are induced by looking at the relative magnitudes of the
onsite/intersite energies of the electric dipoles, and the quan-
tum fluctuations of the nuclei in the path-integral samplings.

Our analysis shows that, like thermal paraelectric, the
QPEs can also be classified as of order-disorder or of dis-
placive types, according to the relative magnitudes between
the on-site, intersite energies, and quantum fluctuations. This
study presents a simple and unified atomic level picture of
the QPE properties in BaFe12O19, which could be used to
understand different experiments when new QPE materials
were found.

This article is organized as follows. In Sec. II, we present
the methodology of constructing an effective lattice Hamilto-
nian for BaFe12O19. The computational details of obtaining
the model coefficients and performing the PIMC simulations
are also provided. In Sec. III, we discuss the results on the
T -dependence of the dielectric constants and microscopic
properties of BaFe12O19, as well as a discussion of how the
microscopic properties are influenced by the relationship be-
tween on-site energy, inter-site energies of the electric dipoles,
and the quantum fluctuations of the nuclei. A summary of the
conclusions is given in Sec. IV.

II. METHODS

A. Effective Lattice Hamiltonian

1. BaFe12O19

To generate the effective lattice Hamiltonian for simulating
the finite-T FE and PE phases as well as their possible tran-
sitions in BaFe12O19, we choose a set of real-space localized
basis, called lattice Wannier functions (or local modes). Such
a lattice Wannier function was first suggested by Kohn in 1973
[19], written as

w
R0
i [RN,ν, s] = 1

N

BZ∑
k

eik·[RN,ν−R0]
[

n∑
s′

Mk
ss′ξ

k
i (ν, s′)

]
. (1)

Here, R0 means the position vector of the Wannier function
center (WFC), RN,ν denotes the position vector of the νth
atom in the N th unit cell, s, s′ are the index of the phonon
branches included in the effective lattice Hamiltonian, i =
x, y, z denotes the Cartesian component, and

∑BZ
k means the

integration of the k vector over the first Brillouin zone. ξ is
the phonon eigenvector. Mk is a linear transformation to make
the Wannier functions localized. In the electron case, there is
a “gauge freedom” in the electronic Blöch function.

By choosing a good gauge, one can get a set of well-
localized Wannier functions [20]. In the lattice case, a few
schemes were suggested to make the basis functions localized
[17,21,22].

In this study, we follow the scheme suggested by Íñiguez
and co-workers [17], which chooses Mk so that

∑n
i Mk

jiξ
k
i at

different k can add their contribution coherently at the WFC.
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FIG. 2. (a) Schematic of the redefined lattice (blue lines) used in
our model. Parts (b) and (c) show the short-range intersite coupling
contained in our model. For clarity, we show only the TBP Fe-O
polyhedrons whose centers are located on the 2b site (the lattice
site of our re-defined lattice). (d) Schematic of the lattice Wannier
function.

In so doing the interference effects dampen the amplitude of
the displacements at sites away from the WFCs. We choose
the WFCs to be located at the Wyckoff positions, which
dominate the properties of phonon branches associated with
the effective lattice Hamiltonian.

As shown in Fig. 1(b), there are two soft phonon branches
in the whole Brillouin zone. Analysis of the phonon eigen-
vectors show that these soft modes are dominated by the
displacements of the Fe ions on the 2b sites along the c-axis,
in agreement with previous experiments [8,13–16]. Therefore,
we choose the Fe ions on the 2b sites as the WFCs.

We show a schematic of our constructed lattice Wannier
function in Fig. 2(d). Only the TBP polyhedrons at the WFC
site, the nearest-neighbor (NN), and the next-nearest-neighbor
(NNN) sites are shown. The size of arrows reflects the relative
magnitude of the lattice Wannier functions.

More than 90% of the weight of the lattice Wannier func-
tion is located on the WFC sites, meaning that the lattice
Wannier functions are well-localized. Then, the lattice vibra-
tions associated with those two soft phonon branches can
be represented by superpositions of all the lattice WFCs at
different 2b sites of the crystal. It should be noted that the
WFCs at two different 2b sites in one unit cell are equal to
each other because of symmetry. Therefore, we can treat them
with the same label on a redefined lattice consisting purely of
an array of 2b sites [see Fig. 2(a)].

Denoting the amplitude of the lattice Wannier function on
site i (here we use the re-defined lattice) as ui, the effective
lattice Hamiltonian can be written as

H ({ui}, {η}) =
∑

i

(
κu2

i + αu4
i

) +
6∑

λ=1

∑
〈i, j〉λ

Jλ
i juiu j

+ Z2
eff

ε∞

∑
i< j

ui · ui − 3(R̂ij · ui)(R̂ij · uj)

R3
i j

+
∑

i

Bηu2
i . (2)

The first term is the on-site energy, with the quartic contri-
bution included to address anharmonicity. The second and
third terms correspond to the intersite couplings. The short-
range intersite coupling considered in our model is shown
in Figs. 2(b) and 2(c), and the long-range part of the in-
tersite coupling is represented by a classical dipole-dipole
interaction.

Zeff denotes the Born effective charge of the lattice Wan-
nier function, and ε∞ denotes the optical dielectric con-
stant, which can be obtained from the first-principles cal-
culations. The fourth term denotes the coupling between
the strains (strength is denoted by η) and the magnitude
of soft phonons. It is the only adjustable parameter in this
model.

To obtain the coefficients in the above model Hamilto-
nian, we fit them to the first-principles Born-Oppenheimer
potential energy surface (PES) along the soft phonon eigen-
vectors on the high-symmetry points in the Brillouin zone.
The normal modes at 	(0, 0, 0), M(0, 1/2, 0), K(1/3, 1/3, 0),
and A(0, 0, 1/2) are used, and all the curves are fitted by
quartic functions. The quartic coefficients obtained have sim-
ilar values, therefore we use their average as α. The long-
range dipole-dipole interactions are calculated by Ewald sum-
mation. The comparison is shown in Fig. 1(c), where the
markers are the first-principles results and the solid lines
are obtained using our model. It is clear that an excel-
lent match is obtained in the low-energy part, which dom-
inates the partition function relevant to the PE-FE phase
transition.

B. First-principles calculations

The DFT calculations were performed using the Vienna
Ab initio Simulation Package (VASP) [23,24]. For electronic
exchange and correlation interactions, the PBE+U functional
is chosen [25,26]. The plane-wave cutoff energy is 500 eV.
Concerning the Brillouin zone integration, we use a 8 × 8 ×
2 k-grid.

The on-site Coulomb interaction parameters are specified
with U = 5.0 eV and J = 1.0 eV [9]. Structural relaxation
is performed with a conjugated-gradient algorithm, until
the Hellmann-Feynman forces on each atom are less than
0.1 meV Å−1. The phonon spectrum and phonon eigenvectors
are given by PHONOPY [27]. In Fig. 1, the PES curves at 	,
M, and A are given by phonon calculations on a 2 × 2 × 2
supercell, while the curve at K is calculated using a 3 × 3 × 1
supercell.
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C. Path-integral Monte Carlo simulations

When the model Hamiltonian is constructed, we perform
path-integral Monte Carlo (PIMC) to simulate the finite-T
polarization properties [28]. For BaFe12O19, our simulations
were performed on a 12 × 12 × 6 supercell. For the PIMC
simulation at each T , we performed 200 000 Monte-Carlo
sweeps (MCS) for thermalization and 1 000 000 MCS for
statistics. Concerning the number of time slices (Ntime-slice) for
the path integral, we use T Ntime-slice = 600, where T is the
temperature in degrees Kelvin, and Ntime-slice is the number of
time slices, to keep a small enough Trotter error (the change
of total energy is less than 0.02 meV/per site), and we use the
bisection algorithm to improve the sampling efficiency [28].
The characteristic vibrational frequencies of the soft modes
are small in both systems studied. Therefore, this parameter is
sufficient for getting the PIMC simulation results converged
with respect to the number of time slices.

III. RESULTS

A. DFT ground state

We first performed first-principles calculations to confirm
the electric dipole configuration of the static ground-state
crystal structure. Distorted crystal structures with different
amplitudes along the soft phonon modes at the high-symmetry
k-points were created and we obtained their total energy by
first-principles calculations. The total energies versus ampli-
tudes along different soft modes were shown in Fig. 1(c) by
square, circle, triangle, and star solid (hollow) markers, cor-
responding to the FE (AFE) soft modes at the high-symmetry
k-points 	, M, K, and A. The minimal energy can be reached
along the FE mode at M(0.5, 0, 0), which means that the DFT
ground state of BaFe12O19 is most likely a stripy AFE state
with polarizations of the lattice Wannier functions on two 2b
sites in a unit cell pointing to the same direction along the c-
axis. This is consistent with previous theoretical calculations
using first-principles calculations, as well as classical Monte
Carlo simulations using a simpler model with classical dipole-
dipole interactions [9].

In the meantime, we also noticed that many other modes,
such as 	-FE, M-AFE, K-FE, and K-AFE modes, have low-
lying states on their PES with similar energies. Therefore, to
make a good description of BaFe12O19’s complex PES, we
need a method that is able to include more information of
soft modes at different k-points. This is also why the lattice
Wannier function method is chosen.

B. Dielectric constants

Now we include finite-T statistical effects at two levels.
Classical Monte Carlo (CMC) method includes classical sta-
tistical effects, and it corresponds to the Ntime-slice = 1 case of
the PIMC method. When the PIMC simulations are converged
with respect to Ntime-slice, the quantum nuclear effects were
also included. As such, comparisons of the CMC and PIMC
results allow us to address the quantum nature of the nuclei in
a very clean manner.

The T -dependent susceptibilities using the above effec-
tive lattice Hamiltonian with CMC and PIMC are shown in

Fig. 3(a). This susceptibility is defined as χ = βNsite

ε0V (〈p̄2〉 −
〈p̄〉2), where V denotes the unit-cell volume, ε0 means the
vacuum dielectric constant, β is the inverse temperature,
p̄ = 1

NsiteNtime-slice

∑Ntime-slice
τ

∑Nsite
i pτ

i denotes the averaged on-
site dipole moments over the sites and the time slices of
imaginary-time path-integral, and 〈· · · 〉 represents the en-
semble average [29]. Due to the imperfection of the DFT
PES, we add a small strain, which stretches the length of
the c-axis about 0.15%, for a better fitting of the dielectric
constants obtained by our simulations to experiments [30].
The susceptibility given by CMC shows a peak at 10 K. In the
higher-T region, the susceptibility shows a Curie-Weiss-like
behavior, which means that BaFe12O19 is in a PE state.

The inverse of the susceptibility from the CMC simula-
tions was shown in Fig. 3(b), together with a linear fitting
denoted by the red dashed line. The absolute value of linear
extrapolated TC is ∼25 K, with the negative sign representing
a signature of the AFE coupling. In the lower-T region,
the susceptibility drops off. This means that the system is
frozen in a minimum of the PES upon cooling, so that the
polarization is hardly changed by an external electric field.
We note, however, that such a behavior has not been observed
in experiments.

Rather, a plateau of dielectric constant (susceptibility) ap-
pears at low T [10,11], as a signal of the QPE. Therefore, we
move on to perform PIMC simulations to address the quantum
fluctuations of the nuclei.

Our PIMC simulations accurately reproduced the low-T
plateau of the susceptibility, as shown in Fig. 3(a), where the
experimental results are black squares and the PIMC results
are purple circles (zoom-in in the inset). This qualitative
difference between the CMC and PIMC results and the nice
agreement between the latter and the experimental values un-
ambiguously mean that the experimentally observed plateau is
due to the quantum fluctuations of the nuclei, i.e., BaFe12O19

is QPE. Then we fit our results by the Barrett formula [31]
(red dashed line),

χ = A + M

0.5T1 coth
( T1

2T

) − T0
, (3)

which has been proven to give a good description of the QPE
of the perovskites [4,31].

In this equation, A and M are constants, T0 reflects the
strength of intersite coupling, and T1, when quantum fluc-
tuations dominate, represents the tunneling strength. After
fitting, we obtained T0 ≈ −11.31 K and T1 ≈ 13.42 K, which
are qualitatively consistent with a previous experiment that
yielded T0 = −22.9 K and T1 = 47.3 K [11].

For a more in-depth understanding of the QPE nature of the
low-T plateau, we further decompose the contributions from
the thermal and quantum fluctuations of the nuclei at varying
T ’s using a method proposed by Zhong and Vanderbilt in
Ref. [3]. The thermal fluctuation is defined as u2

thermal =
〈〈u〉2

s 〉i,t , where s denotes the time slice in the PIMC simula-
tions, i denotes the lattice site, and t denotes the Monte Carlo
sweep.

In the language of a path integral, the centroid positions
often refer to a classical analogy of the quantum paths, and
these two quantities become exactly the same at high T . The
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FIG. 3. (a) Susceptibility vs temperature calculated by CMC and PIMC simulations with strain along the c-axis, ηc = 0.15%. The red
dashed line is fitted by the Barrett formula. Inset of (a): Compare between PIMC results (purple circles) and previous experiments (black dots);
the experimental data are extracted from Shen et al.’s paper [11]. (b) The inverse of the susceptibility from CMC (blue squares), PIMC (purple
circles), and a linear fitting to the CMC results (dashed line). (c) The thermal and quantum contribution to the fluctuations vs T .

total fluctuation is u2
total = 〈u2〉i,s,t . With these two quanti-

ties, a crude estimation of the quantum contribution to the
nuclear fluctuations can be given by u2

total − u2
thermal. The

numerical results are shown in Fig. 3(c).
The proportion of quantum contributions decreases grad-

ually with the increase of T until the region when thermal
contributions are dominant, which corresponds to the classical
paraelectric phase as appeared in the conventional Curie-
Weiss theory. At low T , the quantum contribution crosses
over with the classical one at ∼10 K, below which the quan-
tum fluctuation is dominant. It is responsible for the plateau
of susceptibility as observed in the experiments. Therefore,
the picture that the low-T behaviors of susceptibility orig-
inate from the quantum fluctuations of the nuclei is further
confirmed.

C. The influence of geometrical frustration

Due to the triangular lattice and AFE-type nearest-
neighbor intersite coupling of BaFe12O19, the influence of
geometrical frustration on the experimental observations of
the dielectric function is worthy of further study. For a sys-
tem with geometrical frustration, there is a large number of
low-energy dipole configurations having the same energy, so
that the system cannot reach an ordered state and become
paraelectric. Therefore, if the paraelectric behaviors were due
to the geometrical frustration, it will be easily broken when
the geometrical frustration is broken. To test this, we change
the nearest-neighbor coupling J1 of the short-range term on
one of the three bonds of the triangular lattice. The calculated
susceptibility was shown in Fig. 4. The results denoted by
square and triangular markers correspond to the case when we
choose J ′

1 = 0.5J1 and 1.5J1, respectively. The circles denote

the results when J1 is not changed so that the symmetry and
geometry frustration are preserved.

When the symmetry is broken, the susceptibility changes
little and still shows a low-T plateau, meaning that this plateau
is irrelevant to geometry frustrations. Rather, the qualitative
difference between the CMC and PIMC results as shown in
Fig. 3(a) is the reason for the nontrivial electric polarization
behaviors as observed in the experiments [11].

FIG. 4. Susceptibility with changed nearest-neighbor short-
range intersite coupling J1. The circles denote that J1 is not changed
so that the symmetry and geometry frustration are preserved. To
compare, one can also change one J1 of the three bonds of the
triangular lattice, as schematically shown on the upper right corner.
The red line denotes the changed bonds. Squares denote the results
when J ′

1 = 0.5J1 and triangles denote the results when J ′
1 = 1.5J1.
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FIG. 5. (a) Distributions of the amplitude u of the lattice Wannier
functions at 4 and 295 K. (b) u-dependence of the total and on-site
energies with M-FE dipole configuration.

D. Order-disorder/displacive behaviors

As we have mentioned above, many experiments on
the crystal structure of BaFe12O19 have observed the
displacements of Fe ions at the Fe-O TBP site. To understand
this, we plot the distributions of the amplitude of our lattice
Wannier function at 4 and 295 K, denoted as u, along the c
axis in Fig. 5(a). According to our construction of the lattice
Wannier function, the displacement of the Fe ion on the 2b
site roughly equals 0.96u.

From this relation, we estimate that the Fe-Fe distance
obtained by our simulations is 0.164 Å at 4 K (0.267 Å at
295 K). It represents a good agreement with the experimental
results, e.g., in a recent neutron diffraction experiment [8],
the Fe-Fe distance is 0.196 and 0.354 Å at 4 and 295 K,
respectively.

Thus, the experimental observations can be understood
as having the Fe ions on the Fe-O TBP sites being “split”
into two half ions from the mirror plane of TBP [15],
by statistical average. This double-peak distribution implies
an order-disorder nature of the paraelectrics, meaning that
the long-range order is erased by fluctuations, but the lo-
cal electric dipoles (distortion of crystal structure) persist.
For a conventional FE-PE phase transition induced by ther-
mal fluctuations, one can classify paraelectric properties as
displacive or order-disorder-type according to the micro-
scopic behaviors when the FE materials become PE upon
heating.

In the QPEs, whether displacive or order-disorder nature
dominates the paraelectric properties can be determined by the
relationship between the on-site energy Eon-site, the inter-site
coupling Einter, and the quantum fluctuations Q, as we shown
in Table I. The on-site energy, Eon-site, is the static energy

TABLE I. Displacive or order-disorder behaviors determined by
the relationship between and among Eon-site, Einter, and the quantum
fluctuations Q.

Eon-site > Einter

Q > Eon-site Displacive QPE
Eon-site > Q > Einter Order-disorder QPE

Q < Einter FE
Eon-site < Einter

Q > Einter Displacive QPE
Q < Einter FE

FIG. 6. Parts (a) and (c) show the u-dependence of the total and
on-site energies for the case of Eon-site > Einter and Eon-site < Einter,
respectively. Parts (b) and (d) show the distributions of u obtained
by performing PIMC simulations (4 K with T Ntime-slice = 600) for
systems shown in (a) and (c), respectively, with different effective
mass. In panel (b), the effective mass m = 10, 55, and 130 cor-
responds to the case of displacive QPE, order-disorder QPE, and
ordered FE, respectively. In panel (d), the effective mass m = 10 and
55 corresponds to the case of displacive QPE and ordered FE. We
renormalize the maxima of all distributions to the same value for
clarity.

reduction when a local structural distortion (local electric
dipole) arises from the high-symmetry crystal structure. The
intersite energy, Einter, is the further energy reduction when the
local electric dipoles form a long-range ordered state by the
inter-site coupling. The quantum fluctuations Q can be treated
as a constant for a given system at low T , differing from the
thermal fluctuations which vanish upon cooling.

When Eon-site > Q > Einter, fluctuations can easily suppress
the long-range order (whose formation is due to the intersite
coupling) but cannot suppress the local electric dipoles (due
to the on-site energy), so that the QPEs show order-disorder
behavior. Conversely, when Q > Eon-site and Q > Einter, the
QPEs show a displacive nature since all the distortions are
washed out by the large quantum fluctuations. If Q < Einter,
the quantum fluctuations cannot suppress the long-range or-
der, so that the system will become FE at low T .

In BaFe12O19, Eon-site and Einter can be estimated by the
on-site and intersite part of our effective Hamiltonian, re-
spectively. The results are shown in Fig. 5(b), with Eon-site ≈
4.1 meV and Einter ≈ 1.1 meV. Eon-site is larger than Einter, and
the quantum fluctuation is not large enough to wash out the
local moment, as shown in Fig. 5(a). Therefore, the QPE is
clearly of an order-disorder-type nature.

To further confirm the conclusion shown in Table I, we
design a simple model on a triangular lattice that only has the
nearest-neighbor (J1) FE coupling. By changing the on-site
quadratic coefficient, we can construct systems that satisfy
Eon-site > Einter or Eon-site < Einter [the PES shown in Figs. 6(a)

104102-6



QUANTUM PARAELECTRICITY OF BaFe12O19 PHYSICAL REVIEW B 101, 104102 (2020)

and 6(c), respectively]. The influence of quantum fluctuations
on these systems was simulated by PIMC, and the strength
of quantum fluctuations is tuned by changing the magnitude
of the effective mass (smaller mass gives larger quantum
fluctuations).

The distributions corresponding to different cases are
shown in Fig. 6(b) (Eon-site > Einter case) and Fig. 6(d)
(Eon-site < Einter case). These results show good agreement
with the conclusion in Table I. Therefore, we suggest that
Table I can be used as a simple rule of thumb to distinguish
different local behaviors of the electric dipoles in QPEs.

IV. CONCLUSION

In summary, we performed PIMC simulations combined
with an accuracy effective lattice Hamiltonian in terms of
the lattice Wannier function to study the electric polarization
behaviors of BaFe12O19. The quantum paraelectricity nature
of BaFe12O19 is confirmed, which shows a clear plateau
of dielectric constants and large quantum contribution of
fluctuations at low T . By constructing an artificial system
in which geometry frustration is broken, we found that the
geometry frustration plays an unimportant role in the QPE
behavior of BaFe12O19. Finally, we show that QPE can have

order-disorder or displacive natures, such as what exists in the
thermal paraelectrics. This classification can be understood
using a very simple descriptor, i.e., the relative magnitude of
the on-site, intersite energies of electric dipoles, and quantum
fluctuations. The QPE in BaFe12O19 is of an order-disorder
nature.

These results show good agreement with the previous
experiments of a crystal structure. It should be noted that
the order parameter of BaFe12O19, which is a scalar, is dif-
ferent from that of the perovskites (e.g., SrTiO3), which is a
three-component vector. All these characters give persuasive
evidence of a new type of QPE, which is different from the
well-known QPE, SrTiO3. We hope that these results will
enrich our theoretical understanding of QPEs.
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