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We propose a non-perturbative ab initio approach to calculate the electrical conductivity of a
liquid metal. Our approach is based on the Kubo formula and the theory of electron-phonon
coupling (EPC), and unlike the conventional empirical approach based on the Kubo-Greenwood
formula, fully takes into account the effect of coupling between electrons and moving ions. We show
that the electrical conductivity at high temperature is determined by an EPC parameter λtr, which
can be inferred, non-perturbatively, from the correlation of electron scattering matrices induced
by ions. The latter can be evaluated in a molecular dynamics simulation. Based on the density-
functional theory and pseudopotential methods, we implement the approach in an ab initio manner.
We apply it to liquid sodium and obtain results in good agreement with experiments. This approach
is efficient and based on a rigorous theory, suitable for applying to general metallic liquid systems.

I. INTRODUCTION

Liquid metals are an important class of materials vi-
tal for many applications because of their excellent elec-
trical and thermal conductivities combined with flexible
mechanic properties. They find applications in flexible
electronics [1–3], microfluidic devices [4, 5] and material
syntheses [6], etc. They also form cores of many planets,
generating geomagnetic fields [7–9]. The physical prop-
erties of liquid metals are crucial for these applications
and for understanding the formations and evolution of
planets. Among them, electrical conductivity is a ba-
sic nonetheless one of the most important properties. As
such, an efficient and reliable approach for calculating the
electric conductivity of a liquid metal is highly desirable.

At present, the most successful approach for calcu-
lating the electrical conductivity of a liquid metal is
to combine molecular dynamics (MD) or path-integral
molecular dynamics (PIMD) simulations with the Kubo-
Greenwood (KG) formula [10, 11]. This approach ap-
proximates liquid as an ensemble of independent elec-
tron systems subject to quenched and disordered ionic
fields, and inherently ignores the effect of the motion of
ions on the evolution of electron states [12]. The elec-
trical conductivity is calculated by averaging ion config-
urations sampled from MD simulations [7, 12–14]. The
direct-current (dc) limit (ω → 0) of the conductivity is
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obtained by extrapolating from conductivities at high-
frequencies [7, 14, 15]. This approach has been applied
to various liquid metals with great successes [9, 14–22].
However, its approximated and empirical nature limits
further improvements. Parallel to this, in the more rig-
orous treatment developed for solids, electrical resistivity
can be interpreted as a result of electron-phonon coupling
(EPC) [20–22], for which the dynamic effects of ion mo-
tion play a central role. The harmonic approximation
of ion motion, however, is often applied and the EPC is
treated in a perturbative manner. Both of these treat-
ments are not applicable in liquids. It is not obvious how
the two distinct views can be unified in a certain limit.
Nor it is satisfactory that one has to rely on two distinct
theories for two phases of one matter.

In this paper, we extend the applicability of the EPC
theory of conductivity originally developed for solids and
develop a non-perturbative ab initio approach appropri-
ate for calculating the dc conductivity of a liquid. Instead
of perturbatively determining the EPC scattering ampli-
tudes, we reformulate the theory to relate the dc conduc-
tivity with the irreducible interaction mediated by EPC
in the particle-hole channel. We show that the irreducible
interaction can be inferred from the correlation of the T
matrices of electron-ion scatterings, which can be evalu-
ated in a MD or PIMD simulation. At high temperatures,
the formula of electrical resistivity is reduced to the famil-
iar form of the conventional EPC theory that is propor-
tional to a single EPC parameter λtr. We explicitly relate
the parameter to the irreducible interaction. With these
developments, we have a non-perturbative approach for
determining electrical conductivity. We implement the
approach by using the density-functional theory (DFT)

ar
X

iv
:2

20
1.

06
10

3v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
6 

Ja
n 

20
22

mailto:junrenshi@pku.edu.cn
mailto:xzli@pku.edu.cn


2

and norm-conserving pseudopotential methods. Apply-
ing the implementation to liquid sodium, we find that the
resistivity of sodium has an upward jump when transited
from a solid to a liquid phase, and exhibits non-linear
temperature-dependence at high temperatures. The re-
sults are in good agreement with available experiments,
both qualitatively and quantitatively.

The remainder of the paper is organized as follows.
In Sec. II, we develop the general formalism of the elec-
trical conductivity in liquids. The relation between the
conductivity and the irreducible interaction I mediated
by EPC in the electron-hole channel is established. In
Sec. III, we show how I can be inferred from a MD sim-
ulation by relating it to the correlation of T matrices
of electron-ion scatterings. The approach is applied to
liquid sodium. Implementation details and results are
presented in Sec. IV. Finally, we summarize and discuss
our results in Sec. V. Some details of the theoretical
derivations and the tests of numerical convergence are
presented in Appendices.

II. EPC THEORY OF ELECTRICAL
CONDUCTIVITY

In this section, we develop formalism for calculating
the dc conductivity of a liquid. The derivation is based on
the conventional EPC theory of conductivity originally
developed for solids, see, e.g., Ref. 23. To have a theory
appropriate for a liquid, we need to eliminate reliance
on perturbatively defined quantities and the harmonic
approximation in the original theory.

A. Formula of conductivity

From the Kubo formula [10, 23], the dc electrical con-
ductivity of a general system can be calculated by

σ = − lim
ω→0

Im[πret(ω)]

ω
, (1)

where πret(ω) is the retarded current-current correlation
function. To determine πret(ω), it is more convenient
to first determine the imaginary-time-ordered correlation
function

π(iωm) = − 1

3V

∫ ~β

0

dτeiωmτ
〈
T̂τ ĵ(τ) · ĵ(0)

〉
, (2)

and then perform an analytic continuation by substitut-
ing iωm with ω + iδ, where δ denotes an infinitesimal
positive constant. Here τ ∈ [0, ~β) is the imaginary
time, with β = 1/kBT being the inverse temperature.
ωm = 2mπ/~β,m ∈ Z is a Boson Matsubara frequency.
V is the total volume of the system. We have assumed
that the system is isotropic.

By substituting the current operator ĵq(τ) =

−(e/m)
∑

pσ pψ̂
†
pσ(τ)ψ̂pσ(τ) into the Kubo formula, we

Γ
(0)
pp′(−iν, iν)

(p,−iν)(p′,−iν)

(p′, iν) (p, iν)

I
(0)
pp′(−iν, iν)

(p′,−iν) (p,−iν)

(p′, iν) (p, iν)

Λ(|p|, ǫ)

(p, ǫ− iδ)

(p, ǫ+ iδ)

(c) (d) (e)

Γpp′(q0)

pp′

p′ + q0 p+ q0

q0= p +Λ(p, q0)

p

p+ q0

q0

(a)

+=
Γp′′p′(q0)

p′

p′ + q0

p′′ p

p′′ + q0 p+ q0

Ipp′′(q0)Γpp′(q0)

pp′

p′ + q0 p+ q0

(b)

p′ p

p′ + q0 p+ q0

Ipp′(q0)

FIG. 1. (a) The Bethe-Salpeter equation (10). (b) The rela-
tion between the vector vertex function and the scattering am-

plitude. (c-e) The definitions of Γ
(0)

pp′(−iν, iν), I
(0)

pp′(−iν, iν),

and Λ(|p|, ε), respectively.

obtain:

π(iωm) =
2e2

3m2V

1

~β
∑
pp′

p · p′G(2)(p, p′ + q0; p+ q0, p
′),

(3)
where

G(2)(p, p′ + q0; p+ q0, p
′) = −

∫ ~β

0

dτeiωmτ

×
〈
T̂τ ψ̂

†
pσ(τ + τ0)ψ̂pσ(τ + τ0)ψ̂†p′σ(τ0)ψ̂p′σ(τ0)

〉
(4)

is the two-particle Green’s function, ψ̂pσ (ψ̂†pσ) is the
annihilation (creation) operator of an electron with the
momentum p and spin σ, e and m are the charge and bare
mass of the electron, respectively. For simplicity, we use
the 4-dimensional momentum notation p ≡ (p, iν), and
q0 ≡ (0, iωm), where ν ≡ (2n+ 1)π/~β, n ∈ Z denotes a
Fermion Matsubara frequency.

The two-particle Green’s function G(2) can in general
be decomposed as

G(2)(p, p′ + q0; p+ q0, p
′) = GpGp+q0δpp′

+
1

~2β
GpGp+q0Γpp′(q0)Gp′Gp′+q0 , (5)

where we ignore the inconsequential disconnected part
of the Green’s function, Gp is the single-particle Green’s
function of the system, and Γpp′(q0) is the scattering am-
plitude of an electron-hole pair scattered from (p, p+ q

0
)

to (p′, p′ + q0). We note that Gp is diagonal in the basis
of plane waves because a liquid has the space and time
translation symmetries.

We define a vector vertex function Λ(p, q0) = p +
(1/~2β)

∑
p′ p
′Gp′Gp′+q0Γpp′(q0) [see Fig. 1(a)]. Because

a liquid is isotropic, the vector vortex function must have



3

the form Λ(p, q0) = pΛ(|p|; iν, iν + iωm), where Λ is a
scalar vertex function [23]. Equation (3) can be rewritten
as

π(iωm) =
2e2

3m2

1

~β
∑
p

GpGp+q0 |p|2Λ(|p|; iν, iν + iωm).

(6)
We then complete the summation of the Matsub-

ara frequency ν, and preform the analytic continuation
iωm → ω + iδ. After applying Ward identities for EPC
systems [23, 24], we obtain

σ =
2e2

3m2

∫
d3p

(2π~)3
|p|2

∫ ∞
−∞

dε

2π~

[
−dnF (ε)

dε

]
×
∣∣Gret

p (ε)
∣∣2 Λ(|p|, ε− iδ, ε+ iδ), (7)

where Gret
p (ε) is the retarded Green’s function. The de-

tails of the analytic continuation can be found in §8.4.2
of Ref. 23.

We further apply the approximation∣∣Gret
p (ε)

∣∣2 ≈ − π~2

ImΣ(|p|, ε+ iδ)
δ(ε+ εF − ε̃p(ε)), (8)

where Σ(|p|, ε + iδ) is the self-energy of the system,
ε̃p(ε) = (|p|2/2m) + ReΣ(|p|, ε) is the renormalized elec-
tron dispersion, and εF is the Fermi energy. The approx-
imation is valid when |ImΣ(|p|, ε + iδ)| � εF , which is
true for most metallic systems.

Finally, noting that the system is isotropic and the
vertex function and the self-energy only weakly depend
on |p| for |p| ∼ pF , we obtain the formula for determining
the dc conductivity of a liquid

σ =
e2n0~

2m

∫ ∞
−∞

dε
Λ(pF ; ε− iδ, ε+ iδ)

Z(ε)ImΣ(pF ; ε+ iδ)

dnF (ε)

dε
, (9)

where n0 is the electron density, nF (ε) is the Fermi-Dirac
distribution function, and pF is the Fermi momentum.
Λ(pF ; ε − iδ, ε − iδ) is obtained from Λ(pF ; iν, iν + iωm)
by substituting iν → ε − iδ and iν + iωm → ε + iδ, and
Z(ε) = 1 + (m/pF )[∂ReΣ(p, ε+ iδ)/∂p]p=pF is a factor
due to the renormalization of the electron dispersion.

B. Integral equations

While Eq. (9) has a form identical to that of the con-
ventional EPC theory, all complexities are hidden in
the scalar vertex function. In the conventional theory,
the vertex function is determined perturbatively from an
EPC Hamiltonian based on the harmonic approximation.
For liquids, instead, we make use of exact integral rela-
tions.

For the scattering amplitude Γ, we have the Bethe-
Salpeter equation [Fig. 1(b)] [25]

Γp,p+q(q0) = Ip,p+q(q0) +
1

~2β

∑
q′

Ip,p+q′(q0)

×Gp+q′Gp+q′+q0Γp+q′,p+q(q0), (10)

where we introduce an irreducible electron-hole interac-
tion I. In the perturbation theory, I includes all the two-
particle scattering diagrams that are irreducible in the
direct electron-hole channel [26]. For liquids, we have to
determine it non-perturbatively. This will be discussed
in the next section.

From the relation between the vertex functions and Γ
[Fig. 1(a)], it is straightforward to obtain the integral
equation for the scalar vertex function

Λ(|p|; iν, iν+ iωm) = 1 +
1

~2β

∑
q

p · (p + q)

|p|2
Ip,p+q(q0)

×Gp+qGp+q+q0Λ(|p + q|; iν, iν + iωm). (11)

C. High temperature limit

In most cases, the melting temperature of a material
is much higher than its Debye temperature ΘD. As a
result, it suffices to determine the conductivity at the
high-temperature limit T � ΘD. In this case, the con-
ductivity is determined by a single EPC parameter λtr.
This is shown as follows.

In the high temperature limit, Eq. (11) can be sim-
plified. Note that the Matsubara frequency ~ωmq

≡
2mqπkBT � kBΘD unless mq = 0, while Ip,p+q(q0),
which is induced by the EPC, has significant magnitude
only when ~ωmq

. kBΘD, where ωmq
denotes the Mat-

subara frequency of q. We therefore keep only terms with
ωmq

= 0 in the summation in Eq. (11). As a result, for
iν → ε− iδ and iν + iωm → ε + iδ, the equation can be
simplified as

Λ(|p|; ε) = 1 +
1

~2β

∑
q

p · (p + q)

|p|2
I

(0)
p,p+q(ε− iδ, ε+ iδ)

×
∣∣Gret

p+q(ε)
∣∣2 Λ(|p + q|; ε), (12)

where Λ(|p|; ε) ≡ Λ(|p|; ε − iδ, ε + iδ) [Fig. 1(e))], and

I
(0)
p,p+q(ε − iδ, ε + iδ) denotes Ip,p+q(q0) for the given set

of the momenta and a zero frequency transfer [Fig. 1(d))].
We then apply the approximation Eq. (8). It gives rise

to a Dirac delta function which constrains p + q on the
Fermi surface, i.e., |p + q| = pF . As a result, Λ(|p +
q|; ε) = Λ(pF ; ε) can be moved out of the summation.
We define a set of EPC parameters(

λ(ε)
λtr(ε)

)
=
∑
q

(
1

−p · q/|p|2
)
I

(0)
p,p+q(ε− iδ, ε+ iδ)

× Z(ε)δ(ε+ εF − ε̃p+q(ε)). (13)

By using the parameters, the imaginary part of the self
energy can be written as

ImΣ(p, ε) ≈ − π

βZ(ε)
λ(ε) (14)
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in the high temperature limit (see Appendix A). It is then
straightforward to get the solution

Λ(pF ; ε) =
λ(ε)

λtr(ε)
. (15)

By inserting Eq. (14) and Eq. (15) into Eq. (9), we de-
termine the dc conductivity. At high temperature and for
ε ∼ 0, we can neglect the energy dependence of λtr(ε) [27].
Completing the integral over ε, we obtain

σ≈ e2n0~β
2πmλtr(0)

. (16)

This is the final formula to be applied for determining the
dc conductivity of a liquid. It has a form identical to that
of the conventional theory. However, for liquids, the EPC
parameter λtr(0) cannot be determined in a perturbative
way. According to Eq. (13), to determine λtr(0), we need
to first determine the irreducible electron-hole interaction
I

(0)
p,p+q(−iδ, iδ).

III. IRREDUCIBLE ELECTRON-HOLE
INTERACTION

From the last section, we see that the irreducible

electron-hole interaction I
(0)
p,p+q(−iδ, iδ) is the key for de-

termining the electrical conductivity of a liquid. In this
section, we develop an approach for determining it.

A. Related to an electron-hole scattering
amplitude

By setting p = (p, iν), p+ q0 = (p,−iν) and q = (q, 0)

in Eq. (10), we obtain an equation for I
(0)
p,p+q(−iν, iν):

I
(0)
p,p+q(−iν, iν) = Γ

(0)
p,p+q(−iν, iν)

− 1

~2β

∑
q′

I
(0)
p,p+q′(−iν, iν)

× |Gp+q′(−iν)|2 Γ
(0)
p+q′,p+q(−iν, iν), (17)

where Γ
(0)
p,p+q(−iν, iν) denotes Γp,p+q(q0) for the given set

of the momenta [Fig. 1(c)], and we keep only terms with
zero Matsubara frequency in the summation of the right
hand side, as it is appropriate for the high-temperature
limit.

The equation suggests an approach for determining the

irreducible interaction: by determining Γ
(0)
p,p+q(−iν, iν)

numerically, we can obtain I
(0)
p,p+q(−iν, iν) by solving

Eq. (17). It is reasonable to expect that I
(0)
p,p+q(−iν, iν)

only weakly depends on the Matsubara frequency iν, the
irreducible interaction can be obtained by

I
(0)
p,p+q(−iδ, iδ) ≈ I(0)

p,p+q(−iν, iν), (18)

for a properly chosen iν (see below).

B. Evaluating the scattering amplitude in MD

Quantities like Γ
(0)
p,p+q(−iν, iν), which is defined in the

imaginary time, can in general be evaluated in a PIMD
simulation. In the simulation, one maps quantum ion de-
grees of freedom into classical ring polymers with beads
representing ions at different instances of the imaginary
time [28]. Electron-related quantities can be evaluated by
averaging an ensemble of quantum electron systems sub-
jected to random imaginary-time-dependent ionic fields.
Applications of such an approach can be found in Ref. 29
and 30.

In the approach, the single-particle can be evaluated
as Gp = 〈Gpp[R(τ)]〉C , and the two-particle Green’s func-
tion as

G(2)(p+ q0, p
′; p, p′ + q0)

= 〈Gpp′ [R(τ)]Gp′+q0,p+q0 [R(τ)]〉C , (19)

where G[R(τ)] denotes the electron Green’s function at a
given ion configuration {Ri(τ)}, and 〈· · · 〉C denotes an
average over ion configurations.

The scattering amplitude Γpp′(q0) can be expressed as
a correlation function. To see that, we apply the identity

Gpp′ = Gpδp,p′ +
1

~
GpTpp′Gp′ , (20)

where Tpp′ denotes the matrix element of the T matrix of
electron scattering induced by an ionic field. Substitute
Eq. (20) into Eq. (19), and compare the resulting form
with Eq. (5), we find:

Γpp′(q0) = β 〈Tpp′Tp+q0,p′+q0〉C . (21)

We can show that the T -matrix has the symmetry

(Tp,p+q)∗ = Tp̄+q,p̄, (22)

where we denote p̄ ≡ (p,−iν). To see this, we note
that the Green’s function can be determined by the ma-
trix equation [G−1]pp′ = G−1

0 (p)δpp′ − Vpp′(iν − iν′),
where G0(p) is the Green’s function in a free space, and
Vpp′(iν−iν′) is the Fourier transform of the random ionic
potential. Since the ionic potential is Hermitian and is
a local function of the time, we have V ∗pp′(iν − iν′) =

Vp′p(iν′ − iν). In addition, we have [G0(p)]∗ = G0(p̄).
By applying these relations, it is straightforward to show
(Gp,p+q)∗ = Gp̄+q,p̄. Besides, time reversal and inversion
symmetries require that [G(p)]∗ = G(p̄). Combining the
relations with Eq. (20), we obtain Eq. (22).

Applying Eq. (21) and Eq. (22), we have

Γ
(0)
p,p+q(−iν, iν) = β

〈
|Tp̄,p̄+q|2

〉
C

(23)

with q ≡ (q, 0). This is the formula to be applied for
evaluating the scattering amplitude.

For a PIMD simulation, to determine the T -matrix for
a time-dependent ionic potential, one needs to solve the
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time-dependent equation of the Green’s function[
− ∂

∂τ
− Ĥ(τ)− εF Î

~

]
Ĝ(τ, τ ′) = δ(τ − τ ′)Î, (24)

where Ĥ(τ) denotes the time-dependent Hamiltonian for
a given ionic potential. This is expensive and infeasi-
ble in practice. Fortunately, we can apply the quasi-
static approximation [29]. This is to choose a Matsub-
ara frequency ν with its magnitude kBΘD/~ � |ν| �
εF /~, and determine instantaneous solutions Ĝ(iν; τ) =

[(iν + εF /~)Î − Ĥ(τ)/~]−1. The approximated solution
of Eq. (24) can then be written as

Ĝ(iν + iωm, iν) ≈ 1

~β

∫
dτ Ĝ(iν; τ)eiωmτ , (25)

where Ĝ(iν + iωm, iν) denotes the Fourier transform of

Ĝ(τ, τ ′). The T -matrix can be obtained by applying
Eq. (20).

Finally, since the scattering amplitude Γ
(0)
p,p+q(−iν, iν)

has a zero frequency transfer, and in most cases, ions
are heavy enough to have a negligible effect of quantum
fluctuations, it is usually sufficient to use the classical
MD instead of the more expensive PIMD for simulating
the motion of ions. In this case, the T -matrix can be
obtained straightforwardly from the static ionic potential
with respect to a given ionic configuration.

IV. APPLICATION TO LIQUID SODIUM

In this section, we implement and apply our approach
to liquid sodium.

A. Implementation

In our implementation, ab initio MD and PIMD simu-
lations are performed using the Quantum Espresso pack-
age interfaced with i-PI [31, 32]. The Martins-Troullier
norm-conserving pseudopotential is used to treat the ion-
electron interactions [33]. The Perdew-Burke-Ernzerhof
(PBE) functional is used to describe the exchange-
correlation potential [34]. The electron Brillouin zone
is sampled with the Γ-point. An energy cutoff of 30 Ry
is used for the expansion of electron wave functions by
plane waves. At 400 K, the MD simulations are run for
supercells containing 128, 250 and 432 atoms, and the
PIMD simulations are run for a supercell of 250 atoms
with 4 and 8 beads. From 500 to 800 K, MD simula-
tions are run for the supercell of 250 atoms. The time
step is 3 fs and the simulation time is not less than 24
ps. The Generalized Langevin equation (GLE) thermo-
stat is used to equilibrate the canonical ensemble. For
each simulation, after the temperature reaches equilib-
rium, the nuclear configurations are uniformly sampled

with a spacing of 25 time steps. To get a converged
result, we usually need ∼ 400 samples. The atomic den-
sities at different temperatures were set according to the
experiment [35].

With ionic configurations output by the MD or PIMD
simulations, we determine the Green’s function G[R(τ)]
for each of the configurations. Corresponding T matrices
are determined by applying Eq. (20). By averaging the
ionic configurations, we obtain the single-particle Green’s

function and the scattering amplitude Γ
(0)
p,p+q(−iν, iν).

The irreducible interaction I
(0)
p,p+q(−iν, iν) is obtained

from the scattering amplitude by solving Eq. (17).

To determine λtr(0), we recast I
(0)
p,p+q(−iν, iν) for p

and p + q close to the Fermi surface as a function of
q ≡ |q|. By interpolation, we can have a function I(0)(q)
for arbitrary values of q. The EPC parameters can then
be determined by(

λ(0)
λtr(0)

)
= N(εF )

∫ 2pF

0

(
q/2p2

F

q3/4p4
F

)
I(0)(q)dq, (26)

where N(εF ) is the density of states of free electrons at
the Fermi Surface.

B. Results

In Fig. 2, we show the irreducible electron-hole interac-

tion I
(0)
p,p+q(−iν, iν) recast as a function I(0)(q) for liquid

sodium at 400 K. The result shown is determined from a
36-ps MD simulation for a supercell of 250 atoms, where
460 samples are extracted. PIMD simulations with dif-
ferent number of beads are also performed, and yield no
statistically distinguishable changes (see Appendix B).
Due to the finite size of the simulation, there is no data
for 0 < q . 0.3kF , although we do find I(0)(0) ≈ 0 as
expected for an interaction induced by EPC. The lack
of data in the region introduces uncertainty for inter-
polating values of I(0)(q). Fortunately, the uncertainty
will not severely affect the determination of λtr(0), as
the contribution from the region is suppressed by the
q3 factor in Eq. (26) (see the inset of Fig. 2). We also
show the scattering amplitude Γ(0)(q) from which I(0)(q)
is inferred. It is numerically close to I(0)(q) but with a
notable difference: Γ(0)(0) 6= 0. It suggests that applying
the Bethe-Salpeter equation (17) is important for recov-
ering the correct asymptotic behavior of the irreducible
interaction.

By applying Eq. (26), we calculate the EPC param-
eters λ(0) and λtr(0) of liquid sodium at 400 K. The
result is shown in Table I. Values for solid sodium,
both from the conventional EPC theory [36] and ex-
periments [37, 38], are also shown. We find that liquid
sodium has a value of λtr(0) nearly twice as large as that
of solid sodium. It suggests a large enhancement of EPC
when sodium transits from the solid to the liquid phase.
The similar enhancements of EPC parameters are also
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FIG. 2. The irreducible electron-electron interaction I(0)(q)

and the scattering amplitude Γ(0)(q) of liquid sodium at

400 K. The functions are recast from I
(0)

pp′ and Γ
(0)

pp′ for

q = |p − p′| and 0.9pF < |p|, |p′| < 1.1pF , respectively. Val-
ues for different p’s and p′’s but having the same q are shown
as separated points. The vertical spreads of the values indi-
cate their uncertainties. The inset shows the integrands of
Eq. (26) for λtr(λ) .

Liquid Solid (bcc)

This work Theorya Experiment
λ(0) 0.36(3) 0.18 0.218b

λtr(0) 0.23(1) 0.12 0.14c

TABLE I. The EPC parameters λ(0) and λtr(0) of liquid
sodium at 400 K in comparison with previous theoretical and
experimental results of solid sodium. The numbers in the
parenthesis denote estimated uncertainties. The superscripts
“a”, “b”, “c” denote data from Ref. 36, Ref. 37, and Ref. 38,
respectively.

found in amorphous solids [39, 40], which share similar
static structure as liquids. According to Eq. (16), the en-
hancement of λtr(0) will induce a jump of the resistivity
in the solid-liquid transition.

We calculate the EPC parameters at different temper-
atures and show the results in Fig. 3. It is evident that
the EPC parameters in liquid sodium are temperature-
dependent. In the conventional EPC theory based on the
harmonic approximation, these parameters are temper-
ature independent. As a result, the resistivity of solid
shows linear temperature dependence at high tempera-
tures. In contrast, the resistivity of liquid sodium will
show non-linear temperature dependence because of the
temperature dependence of λtr(0).

Finally, we show the temperature-dependence of the
electrical resistivity of liquid sodium and compare our
theoretical results with experimental measurements in
Fig. 4. The agreement is good in both the magnitude

4 0 0 5 0 0 6 0 0 7 0 0 8 0 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

EP
C p

ara
me

ter

T e m p e r a t u r e  ( K )

 λ
 λ t r

FIG. 3. The temperature dependence of EPC parameters λ(0)
and λtr(0) of liquid sodium. The errors are estimated from
the vertical spreads of the values of I(q) shown in Fig. 2.

and the trend. The theory correctly predicts the up-
ward jump of the resistivity at the melting point with a
magnitude coinciding well with the experimental obser-
vation. The theory also correctly predicts the non-linear
dependence of the resistivity observed in experiments.
The quantitative differences between the theory and the
experiments are within the error bars of the current cal-
culation.

V. SUMMARY AND DISCUSSION

In conclusion, we have developed a non-perturbative
approach to calculate the electronic resistivity of a liq-
uid. We show that the resistivity is determined by a sin-
gle EPC parameter λtr at high temperature. We further
show that the EPC parameter can be related to the irre-
ducible electron-hole interaction I, which can be inferred
from the fluctuation of scattering T -matrices induced by
the coupling to ions. The fluctuation of the T -matrices
can be determined from a MD simulation. To verify the
approach, we develop an ab initio implementation based
on DFT and pseudopotential methods and apply it to
liquid sodium. The theoretical results are in good agree-
ment with experiments.

Compared to the conventional approach based on the
Kubo-Greenwood formula [10, 11], our new approach has
a number of advantages. Firstly, our approach is more
efficient. The conventional approach determines the dc
conductivity by extrapolation from conductivities at fi-
nite frequencies. In low frequencies, the approach re-
quires a large supercell for obtaining a converging re-
sult. For example, previous simulations have to employ
a supercell containing as large as 2,000 atoms for liq-
uid sodium [15]. In contrast, our approach calculates
the dc conductivity directly from the irreducible interac-
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FIG. 4. Temperature dependence of the resistivity of sodium.
We show the theoretical results of this work, previous theoret-
ical results from the Kubo-Greenwood method (KG1–3, from
Ref. 15, Ref. 14, and Ref. 16, respectively), the linear temper-
ature dependence predicted by the conventional EPC theory
based on the harmonic approximation (HA) (the value of λtr

is from Ref. 36), as well as experimental data. The resistivity
variations among previous works at 400 K are caused by the
choices of DFT exchange-correlation functional, k-point sam-
pling, and supercell size. The experimental data for the liquid
and the solid phases are from Ref. 41 and Ref. 42, respectively.

tion which is expected to be short-range, and the finite
size effect is not as severe. Actually, a 250-atom super-
cell already gives a satisfactory result in our calculation.
Secondly, our approach is based on rigorous formalism
instead of an empirical method. The calculation of the
dc electric conductivity of a liquid shares a unified the-
oretical ground with the same calculation for its solid
phase. Finally, our approach can be improved. We can
identify approximations involved in our approach such as
taking the high-temperature limit and ignoring the ε de-
pendence of the vertex function. These approximations
can be scrutinized and improved if necessary.
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Appendix A: Imaginary part of the self energy

In the theory of liquid superconductivity [29], Liu et
al. introduce an effective electron-electron interaction
W . Comparing the equations satisfied by I(0)(−iν, iν)
(see Sec. III B) and those for W [29], we conclude

I
(0)
p,p′(−iν, iν) = −W11′ (A1)

with 1 ≡ (p, iν) and 1′ = (p′, iν).
Liu et al. also establish a generalized optical theorem

for the imaginary part of the self-energy

ImΣ1 = − 1

~β
∑
1′

(ImG1′)W1′1. (A2)

The relation is exact.
We can apply these two relations to determine the

imaginary part of the self-energy at high temperature.
In this case, we have

ImΣ̄(p, iν) ≈ 1

~β
∑
q

ImG(p′, iν)I
(0)
p′p(−iν, iν). (A3)

Applying the analytic continuation iν → ε + iδ and the
approximation ImG(p′, ε + iδ) ≈ −π~δ(ε + εF − ε̃p′(ε)),
we obtain

ImΣ(p, ε) ≈ −π
β

∑
q

I
(0)
p′,p(ε− iδ, ε+ iδ)δ(ε+ εF − ε̃p′(ε))

= − π

βZ(ε)
λ(ε). (A4)

Appendix B: Tests of convergence

In this Appendix, we test the convergence of our cal-
culation.

The size of the simulation supercell is the most impor-
tant factor affecting the convergence. Figure 5(a) shows
the dependence of the calculated λtr at 400 K on the
number of atoms in the supercell. It can be seen that us-
ing a supercell containing 250 atoms is sufficient for the
convergence of λtr. The smaller supercell makes q-points

available for the interpolation too sparse. The resulting
uncertainty in the integrand function for determining λtr

(see the inset of Fig. 2) is one of the main sources of error.

The effect of quantum fluctuations is another factor
being tested. We compare results from a MD simulation
and PIMD simulations. Figure 5(b) shows how the re-
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FIG. 5. The convergence test of EPC parameter λtr based on MD and PIMD simulations at 400 K with respect to (a) the
supercell size, (b) the number of beads, (c) the energy cutoff and the number of smaples. 250-atom supercell MD simulations,
460 samples and 6-Ry energy cutoff are chosen for the results of the main text.

sults depend on the number of the beads of the PIMD
simulations (1 bead for the MD simulation). We find
negligible differences in the results between the MD and
PIMD simulations. This is expected since the sodium
atom is heavy and the temperature (400 K) is high.

In this work, we use the plane-wave basis. Thus the
energy cutoff for these plane waves should be tested.
Fig. 5(c) shows that λ and λtr are converged using an

energy cutoff of 6 Ry when calculating Green’s function
and solving the Bethe-Salpeter equation.

Finally, the ensemble average of the self-energy and
effective electron-electron interaction is affected by the
number of sampled nuclear configurations. Fig. 5(d)
shows that λ, λtr and resistivity are converged by us-
ing ∼ 400 configurations (obtained from 10000-step MD
simulations) .
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