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Ferroelectric (FE) size effects against the scaling law were reported recently in ultrathin group-IV
monochalcogenides, and extrinsic effects (e.g. defects and lattice strains) were often resorted to.
Via first-principles based finite-temperature (T ) simulations, we reveal that these abnormalities are
intrinsic to their unusual symmetry breaking from bulk to thin film. Changes of the electronic
structures result in different order parameters characterizing the FE phase transition in bulk and in
thin films, and invalidation of the scaling law. Beyond the scaling law Tc limit, this mechanism can
help predicting materials promising for room-T ultrathin FE devices of broad interest.

Miniaturized ferroelectric (FE) device of continued de-
mand in portable consumer electronics poses prerequisite
understandings of a fundamental question, i.e. the na-
ture of FE size effects [1–6]. Finite size scaling (FSS)
theory, as the conventional wisdom, predicts that the
Curie temperature Tc for the paraelectric (PE) to FE
phase transitions decreases when scaling down to finite
sizes [7–9], following:

δTc(d) =
Tc(∞)− Tc(d)

Tc(∞)
=

(
ξ0
d

)λ
, (1)

where Tc(d) and Tc(∞) are the Tc of the film of thickness
d and bulk, respectively [10]. The Tcs of different sizes
are related via the character length ξ0 and the universal
critical exponent λ. As FSS theory shown predictive in
perovskite compounds and a variety of FEs [1, 11–13],
Tc(d) being lower in ultrathin films was believed hereto-
fore as an essential limit in realizing room temperature
(T ) ultrathin FE devices of broad interest [2, 11].

Recent studies on group-IV monochalcogenides, how-
ever, opened the door for realization of room T ul-
trathin FE devices beyond the FSS theory prediction
[14–19]. The experiment by K. Chang et al. showed
that in one unit-cell (1UC) SnTe film the Curie tem-
perature (T 1UC

c ) is 270 K [14], enhanced from the bulk
value (T bulk

c ) of 98 K [20]. Parallel to this, Fei et al.
predicted robust ferroelectricity in analogous monolayer
group-IV monochalcogenides MX (M = Ge, Sn; X =
S, Se) via the Landau-Ginzburg type effective Hamilto-
nian method [15]. Wu and Zeng showed MX’s multi-
ferroelectricity, where the polarization valley switching
by using stress or electric field enables designing room-T
nonvolatile memory [16, 21]. Nevertheless, large extrinsic
effects claimed in these studies such as lower free carrier
density [14, 17, 22, 23], lattice strains [18, 24, 25], etc.
render the intrinsic size effect of ferroelectricity unimpor-
tant, thereby hindering further investigation and search-

ing for other promising materials.

In this letter, we address two issues: i) reveal the na-
ture of intrinsic FE size effects in these materials and an-
alyze their relation with the FSS theory; ii) propose an
easy-to-use criteria for potential low-dimensional FE ma-
terials with Tc higher than their high-dimensional corre-
spondences. SnTe and BaTiO3 (BTO), two paradigmatic
FE materials whose scaling behaviors show remarkable
difference, are discussed in details. Based on the first-
principles exploration of potential energy surfaces, an ef-
fective Hamiltonian is built and used in Monte Carlo sim-
ulations, to investigate the finite-T PE-FE phase transi-
tions. Our simulations reproduce the experimental re-
sults of robust in-plane ferroelectricity and abnormal
thickness dependency of the Tc in SnTe films, and the
conventional scaling behaviors in BTO films. The key
factor, we identify in SnTe the order parameters are de-
viated for the 3D and 2D PE-FE phase transitions, while
in BTO no deviation occurs, is essential to understand
this fundamental difference. As this can be perceived
macroscopically by jumping phases in the PE-FE tran-
sition, a rule of thumb is proposed to predict analogous
low-dimensional FE materials.

We adopt the model proposed by Vanderbilt and
coworkers [26, 27], which enables large-scale calculations
with first-principles predictive power, to investigate the
FE phase transitions in bulk and thin films of SnTe and
BTO. This method is formerly and successfully applied
to bulk perovskites including BTO [28–33]. Due to the
same displacive feature, i.e. soft optical modes (so-called
FE modes) driving spontaneous polarization below Tc,
we develop this method for group-IV monochalcogenides
including SnTe, and for their thin films. The total energy
of an instantaneous finite-T structure differing from the
reference perfect crystal state is written as

E
(dm)
tot = Eref + E

(dm)
3D-param ({ui}, η, p) + E(dm)

corr , (2)
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where dm labels the dimension of the system, ui describes
the FE modes at i-th site, η is the homogeneous strain
tensor, and p is the hydrostatic pressure coupled with the
diagonal terms of η. Edm3D-param contains the intra- and
interactions of the dominant soft modes (FE modes here)
and the lattice strains, parameterized in 3D structure.
The specific form of these terms can be found in Refs. [26]
and [34], and a schematic of one finite-T instantaneous
FE mode configuration on the strained lattice is shown

in Fig. S1. The correction term E
(dm)
corr is added only for

the 2D and 1D systems to address the changes of the
electronic structures upon decreasing dimensionality, as
we will show later in Fig. 2. For ultrathin films (2D
systems), we adopt a correction of exponential decay on
the film thickness, analogous to the form of Ref. [35], as

E(2D)
corr (nl) =

∑

α=β
α=x,y

∑

〈i,j〉
j=i±α̂

e−B·nlAij,αβuiαujβ , (3)

where nl labels the number of layers, Aij,αβ describes the
short range interactions (exclude the short part of dipole-
dipole interactions) between neighboring sites 〈i, j〉. Pa-
rameters for Eqs. (2) and (3) are derived from first-
principles explorations of the potential energy profiles of
the 3D and 2D systems, respectively. More computation
details please see our Supplementary Information [34].

FE modes, the key instabilities for system going
from high-symmetry PE phase to symmetry-breaking FE
phase, can be viewed as the order parameter in this
process. In fact, it is a good approximation shown by
Refs. [36] and [37] that the polarization at one unit site
(Pi) is almost linear to the FE mode magnitude, through:

Pi = eZ∗Bornui/V. (4)

Z∗Born is the Born charge and V is the cell volume. We
use ux,y,z = 〈ui〉x,y,z to characterize the phase transition.
The responsible FE modes for the 3D and 2D structures
are different in SnTe, and they are the same in BTO.
Polarization along [111] in 3D SnTe [Fig. 1(a)], namely
the rhombohedral FE phase, is a results of simultaneous
softening of the triply degenerate FE modes ux, uy, and
uz. Whilst in 2D SnTe [Fig. 1(c)], it is the polarization
along [110] and the softening of the doubly degenerate in-
plane FE modes ux and uy which characterize the PE-FE
transition. In BTO [Figs. 1(b) and 1(d)], the polarization
along [100] and the softening of a singlet FE mode is
the order parameter, and it does not change in the 3D
and 2D systems[38]. This unusual symmetry breaking in
SnTe might be a clue to its abnormal scaling behavior.

We start discussions by looking at the static energies.
Taking the cubic structure as reference, we arrange the
Sn and Te atoms (Ba, Ti, and O atoms for BTO) fol-
lowing the displacement patterns of the soft modes and
monitor the total energy variations. Figs. 2(a) and 2(b)
show the DFT potential curves along one FE mode in

Sn Te Ba Ti O
[111] [100]

[110] [100]

x y

z

(a) (b)

(c) (d)

FIG. 1. The responsible FE modes associated with the FE
phase in (a) bulk SnTe, (b) 1UC SnTe film, (c) bulk BTO,
and (d) 1UC BTO film (Ba-O terminated). The black arrows
indicates atomic displacements along the FE modes.

the bulk and the 1-4UC films of SnTe and BTO, re-
spectively. The bulk results are approached in both two
materials upon increasing the film layers, whereas dif-
ferent evolutions are observed. In 1-4UC films of SnTe,
the deeper potential wells permit larger instabilities for
soft modes, implying an enhancement of Tc in the films.
Moreover, the abnormal weakening of this soften feature
in the 1UC film compared with the 2-4UC films, suggests
a non-monotonous variation of the Tc in 1-4UC films. In
BTO, the FE soft mode is monotonously weakened in
the films, implying a conventional scaling behavior. The
dashed lines in Figs. 2(c) and 2(d) are results obtained us-
ing only the first two terms in Eq. (2), shown to highlight

the importance of E
(dm)
corr in Eq. (3). Without the correc-

tion term E
(dm)
corr , the total for SnTe in Eq. (2) is clearly off

the trend of DFT curves [Fig. 2(c)]. For BTO it differs

quantitatively [Fig. 2(d)]. E
(dm)
corr represents the intrinsic

changes of the electronic structures upon changing from
bulk to thin films [19]. Its magnitude as a function of
layers is shown in the inset of Figs. 2(c) and 2(d). The

different roles played by E
(dm)
corr in SnTe and BTO is cru-

cial for their scaling behaviors. These static DFT results
are in alignment with the experiments in Ref. [14]. How-
ever, considering the complicated 2D nature, they are
not sufficient to clarify the full picture of the FE phase
transitions in thin films at finite-T s.

To obtain Tc, we use the aforementioned effective
Hamiltonian to perform finite-T Monte-Carlo simula-
tions. We first look at the bulk PE-FE phase transitions
in SnTe and BTO. SnTe turns from cubic PE phase (Fm-
3m) to rhombohedral (R3m) FE phase at 98 K [20]. Our
simulations reproduce this by giving a Tc of 147 K, which
is identified by the temperature dependency of FE modes
[black marks in Fig. 3(a)]. Difference of ∼50 K is left to
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FIG. 2. The potential energy curves of bulk and 1-4UC thin
films by DFT (solid lines) for (a) SnTe and (b) BTO. Bottom
panels show the same curves using Eq. (2) only with the first
two terms for (c) SnTe and (d) BTO. The insets in (c) and (d)
show the magnitude of the quadratic corrections in Eq. (3).

account for defects effect, which is absent in our perfect
crystal simulations [22, 23]. Our simulations also obtain
reasonable Tc ∼ 370 K for bulk BTO transiting from cu-
bic PE phase (Pm-3m) to tetragonal FE phase (P4mm)
[Fig. S8], consistent with published studies [39, 40].

Then we check Tc at varying layers. Deviated from
bulk, the SnTe monolayer prefers in-plane polarization
(along [110] direction) [41], as shown by red marks in
Fig. 3(a). We observed a transition from the PE tetrag-
onal phase to the FE monoclinic phase. This in-plane
polarization in monolayer is robust even at room T , ap-
pealing for practical ultrathin devices. Besides this, the
thickness dependency of Tc is also in alignment with the
experimental observations, which measures the distortion
angles [Fig. 3(a) scale to right in blue]. This can be seen
by comparing the trend of saturated distortion angle with
FE modes from our simulations. They are smaller in 1UC
than in 2UC [from red to green symbols scaling to left in
Fig. 3(a)]. After 2UC, they decreases and approaches the
bulk value from above. More alignments can be found in
the magnitude of saturated distortion angle ∼ 1.2◦ (exp.
∼ 1.4◦), and the critical index 0.27-0.35 for 1-4UC films
(exp. 0.33±0.05), see our SI [34]. Tc shows the same
non-monotonous trend in clear discrepancy with the con-
ventional scaling law [blue curves in Fig. 3(b)], whereas
it holds in BTO [Fig. 3(c)].

Last but not least, threats from extrinsic effects should
be ruled out or controlled. Considering the fact we repro-
duce the abnormal scaling behavior of SnTe upon using
stoichiometric structure, the effects of free carriers (Sn
vacancies) should be minor [22, 23]. Strain effects, how-
ever, are crucial and might dramatically tune Tc shown
by early studies in perovskites [15, 42, 43]. Since our

Film-w/ c
Film-w/o c

FIG. 3. (a) The phase transitions in bulk, 1UC, and 2UC
thin films of SnTe (in black, red, and green open marks, re-
spectively). The order parameters, ux, uy, and uz are charac-
terized by square, sphere, and triangle, respectively. In bulk,
ux = uy = uz 6= 0 in the FE phase. In films, ux = uy 6= 0 and
uz = 0 in the FE phase. Blue solid marks show the experi-
mental data acquired from Ref. [14]. Thickness dependency of
Tc is show in (b) for SnTe and in (c) for BaTiO3. Blue (olive)

curves show the case with (without) considering E
(dm)
corr .

model exhibits a build-in stress-strain relation, we set
the same external pressure and fully relax the films in
the MC simulations. In so doing, we claim the abnor-
malities in SnTe is an intrinsic size effect with underlying
mechanism to be revealed.

To understand this abnormality, we compare the mi-
croscopic details of the PE-FE phase transitions in SnTe
and in BTO. In bulk BTO, four phases from cubic (C)
through tetragonal (T) and orthogonal (O) to rhombo-
hedral (R) exist upon decreasing T s, and polarizations
along x, y, and z appear sequentially [Fig. 4(a)]. In
BTO thin films, depolarization results in zero polariza-
tion along z. Three phases from quasi-cubic (qC) through
quasi-tetragonal (qT) to quasi-orthogonal (qO) exist at
decreasing T s, and polarizations along x and y appear
sequentially. In both cases, Tc corresponds to the same
physical process (symmetry breaking here) that only one
of the three FE modes is soften [Fig. 4(a)], i.e. C-T
phase transition in bulk and qC-qT one in thin films.
From bulk to thin films, the finite film thickness cuts
off long-distance correlations along z of the in-plane po-
larizations so that an appreciable finite-size rounding of
critical-point singularities is to be expected [44]. This
forms the basis of FSS theory [7], and conventional scal-
ing behavior is expected.

This situation, however, is different in SnTe where Tc
corresponds to different physical processes, as discussed.
The PE-FE transition is C-R in bulk and qC-qO in films.
The qC-qO transition in films corresponds to the C-O
transition in bulk, which does not appear spontaneously.
Utilizing the knowledge of BTO’s phase sequence, if C-O
exists, it should occur at a higher T . By convenience of
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Phase C
[000]

BTO

PZT

SnTe

X1 material

3D phase sequence

2D phase sequence

3D existing phase

2D existing phase

Phase T
[p00]

Phase O
[pp0]

Phase R
[ppp]

Phase qC
[000]

Phase qT
[pδδ]

High T Low T

X2 material

X4 material
1D existing phase

1D phase sequence

(c)

(d)

(e)

Phase qC
[000]

Phase qT
[p0δ]

Phase qO
[ppδ]

X3 material

(b)(a)

CR

C‘O’

FIG. 4. (a) the C-T-O-R transition sequence in bulk BTO.
(b) top panel: the spontaneous C-R phase transition in bulk
SnTe; bottom panel: the artificial C-O phase transition in
bulk SnTe by constraining uz = 0. (c)-(e) Schematic of the
transition sequence in 3D and 2D FE materials. (c) the con-
ventional ones including BTO and PZT; (d) 2D anomaly in-
cluding SnTe; (e) 1D anomaly based on the same mechanism
remains to be explored. X1 to X4 label candidates for robust
low-dimensional FE devices.

our simulations, we can verify this by constraining the
FE mode along z direction uz = 0. This allows us to ar-
tificially obtain the C-O transition sequence in bulk, as
shown in Fig. 4(b). When the PE-FE transition is forced
to happen between C and O phases, the Tc is substan-
tially elevated. Therefore, the elevated Tc in the films is
related to this omitted O phase in bulk. The FSS theory
aims to describe the scaling behavior between universal-
ity classes only deviated in spatial dimensionality, which
presumes the same physical process, characterized by the
same order parameters and formulation of interactions
upon scaling the system size. This prerequisite is not
fulfilled in SnTe. The order parameters clearly change
since the triply degenerate FE modes can not soften si-
multaneously in the films.

These different scaling behaviors can also be under-

stood by looking at the role played by E
(dm)
corr in Eq. (2).

In BTO, the quantitative changes in electronic structure
do not result in a qualitative change of their relative posi-
tions upon going from the films to bulk. Whilst this is not
the case in SnTe [Figs. 2(a) and 2(c)]. In Refs. [7], [45],
and [46], when the scaling is deduced, a model Hamilto-

nian (e.g. the Ising model) is chosen and the difference
between the bulk and films is characterized by geomet-
ric changes. Renormalization group theory is used and
the subtle but crucial changes of the Hamiltonian upon
going from bulk to films are neglected. This assump-
tion is violated seriously in SnTe. To test this, we can
choose the first two terms in Eq. (2), which addressed
the geometric changes but not the electronic structures,
to perform the PE-FE phase transition upon going from
bulk to films. The scaling law becomes valid again in
both SnTe and BTO [olive curves in Figs. 3(b) and 3(c)].
Therefore, when the changes of electronic structures re-
sult in a qualitative change of the Hamiltonian itself, the
scaling law fails. One macroscopic observable to charac-
terize this abnormality is the order parameters related to
symmetry as we have discussed.

Using this picture, we now propose some promising
low-dimensional FE materials with higher Tc than their
higher-dimensional correspondences. Jumping transition
sequence in Figs. 4(d)-(e) could help. Intuitively, this
means highly degenerate FE modes, which can soften
simultaneously in the higher dimensional systems.
With decreasing dimensionality, symmetry breaking
eliminates this simultaneous softening. Thereby, one
can expect different order parameters for bulk and films,
and higher Tc beyond the scaling law limit. In bulk,
a C-T-O-R sequence of phase transition might happen
upon decreasing T s. This corresponds to a qC-qT-qO
sequence in films, and a qC-qT sequence in 1D systems.
Upon going from 3D to 2D, Fig. 4(c) shows the case
when nothing was jumped in bulk, including BTO and
Pb[ZrxTi1−x]O3 (PZT). In SnTe, the T & O phases
were jumped. Besides this, when the 3D PE-FE phase
transition happens between C & O, the T phase can
be jumped [X1 in Fig. 4(d)]. This picture might also
apply to the 3D to 1D and 2D to 1D transitions. Three
possibilities are shown in Fig. 4(e). When the 3D PE-FE
transition happens between C & R (or C & O), the
T & O phases (T phase) are jumped in bulk, labeled
by X2 (X3). When the 2D PE-FE transition happens
between qC & qR, the qT phase is jumped in the films
[X4 in Fig. 4(e)]. These suggestions based on symmetry
provide a simple rule of thumb to seek systems in which
the low-dimensional systems can possess higher Tc than
their higher-dimensional correspondences. Accurate
numerical characterizations, however, need to resort to
the first-principles based finite-T simulations as reported
above. Considering the fundamental importance of FE
size effect and phase transition problems in condensed
matter physics, we hope this work can stimulate more
experimental and theoretical studies in this direction.
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Here we provide more computational details of the simulations in our manuscript and

additional discussions. In section I, the constructions of the effective Hamiltonian are shown

for both 3D case and 2D case. The setups of DFT calculations and Monte Carlo simulations,

and parameters for SnTe and BTO are given in Section II. Section III discusses the compen-

sation pressure which is used to rule out the strain effect. Microscopic details of the phase

transitions (such as the magnitude of FE mode, lattice strain) of SnTe bulk and thin films

are given in Section IV and Section V, respectively. A pressure-temperature phase diagram

for SnTe bulk is also given in Section IV. At last in Section VI, we process a numerical

experiment in which case the scaling law is valid, to further support our discussions.

I. EFFECTIVE HAMILTONIAN METHOD

A. 3D case

We adopt the form of effective Hamiltonian in Ref. [1]. The effective Hamiltonian consists

of three parts, as

E
(3D)
3D-param ({ui}, η, p) = E1({ui}) + E2({ηl} , pext) + E3({ui} , {ηl}), (1)

where E1({ui}) is the energy term of FE modes {ui, i = 1, 2, · · · , N}, E2({ηl} , pext)
is the energy term of lattice strain {ηl, l = 1, 2, · · · , 6} and external pressure pext, and

E3({ui} , {ηl}) is their coupling.

The energy term of FE modes E1({ui}), contains the local and non-local terms of the

FE modes, as

E1({ui}) = Eself({ui}) + E
(3D)
dipole({ui}) + Eshort({ui}), (2)

where Eself is the isolated on-site energy of the FE modes, E
(3D)
dipole and Eshort describe their

non-local interactions of long-range (here is the dipole-dipole interactions) and short-range

(electron hybridization and repulsion between 1st-3rd nearest neighbors), respectively.

When atoms of one cell are separately displaced from their position of the perfect cubic

structure, i.e. atoms in the other cells keep unchanged, it yields the on-site energy of the

FE modes. We take the Taylor series to describe this energy variation, with cutoff up to

fourth order as

Eself =
∑

i


κ2u2i + α4u

4
i +

∑

(α,β)

γ4u
2
iαu

2
iβ


 , (3)

2



where κ2, α4, and γ4 are the coefficients for corresponding orders. The odd terms have been

ignored according to cubic symmetry. Since FE modes are soft modes, the fourth order

terms are considered to contain at least anharmonic contributions.

For non-local parts, the most prominent term is the dipole-dipole interaction E
(3D)
dipole.

When considering the macroscopic FE properties, it’s a good approximation to view the

polarization (distributed continuously in the space) as a series of departed point dipoles

located at the center of each cell. However, short-range repulsion and electron hybridization,

i.e. Eshort, must be also included to complement the non-local interactions. Analogous with

the treatment of Coulomb terms and exchange-correlation terms in DFT, we shall exactly

characterize the dipole-dipole interaction in E
(3D)
dipole and include all the other inter-site terms

in Eshort. We implement the Edipole calculations with Ewald summation (EW3D)2. Due to

the r−2 form, the direct summation over all interacting dipoles cannot converge with finite

cutoff in real space. Ewald summation divides this into three converged terms, as

E
(3D)
dipole = Er + Ek + Ecorr. (4)

The real space term Er can quickly converge in real space, as

Er =
1

2

N∑

i,j=1

∞∑

|n|=0

′

((µi · µj)B(rij + n)− (µi · rij)(µj · rij)C(rij + n)) , (5)

with

B(r) =
erfc(κr)

r3
+

2κ√
π

e−κ
2r2

r2
, (6)

C(r) =
3erfc(κr)

r5
+

2κ√
π

(2κ2r2 + 3)

r2
e−κ

2r2

r2
, (7)

where κ is the Ewald parameter, and µi is the dipole at site i, and n represents the lattice

vector {n1a+ n2b+ n3c|n = (n1, n2, n3)}. Er sums over all pair 〈i, j〉 and all integer vector

n, with the prime meaning excluding i = j for |n| = 0. And the k-space term can quickly

converge in kspace

Ek =
1

2

N∑

i,j=1

∑

k 6=0

4π

k2L3
(µi · k)(µj · k)e−

k2

4κ2 cos(k · rij), (8)

where k labels the reciprocal lattice vector. And the correction term is

Ecorr = −
N∑

i

2κ3

3
√
π
µ2
i +

1

2

N∑

i,j=1

4π

3L3
µi · µj. (9)
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Note that E
(3D)
dipole is written in forms of µi which might require DFT calculations. Actually, we

can equivalently derive the polarization via FE mode magnitude ui. Modern polarization

theory tells that the changed polarization is linear to the displacement of the centers of

Wannier function, indicating an access to calculate the polarization µi of crystals,3 through

µi =
eZ∗Born

V
ui, (10)

where Z∗Born is the Born effective charge derived from first-principles calculations. Substi-

tuting µi with ui, we would rewrite the dipole-dipole interaction in a form of FE modes ui,

as

E
(3D)
dipole =

1

2

N∑

i,j=1

∑

αβ

Qij,αβuiαujβ , (11)

where the coefficientsQij,αβ are calculated from Eq. (5)-(9) once and for all, and are stored for

latter Edipole calculations. Ensuring efficiency and accuracy, we shall update these coefficients

only when the lattice is largely distorted from the last calculated structure.

The Eshort is written in a similar form with Eq. (11), as

Eshort =
1

2

∑

〈i,j〉

∑

αβ

Jij,αβuiαujβ, (12)

where Jij,αβ is the interaction coefficients. Unlike Edipole, 〈i, j〉 sums over atmost the third

nearest neighbor (TNN. FNN and SNN for first and second nearest neighbor in the same

way), while farther inter-site interaction has been cut off in condition dipole-dipole inter-

actions have been excluded. In fact, we determine this cutoff by watching the tendency of

interaction magnitude towards farther sites. It shows a ratio of 1 : 0.180 : 0.014 by comparing

the strongest magnitudes of the FNN, SNN, and TNN interaction parameters. Considering

that there are 6 FNNs, 12 SNNs, and 8 TNNs, the ratio of energy contributions comes to

be 1 : 0.360 : 0.018. This cutoff up to TNN is reasonable since it quickly converge and the

ignored parts would bring slight contributions. The independent parameters are j1 − j7,

labeling different interacting configurations which could be found in Ref. [4].

Then we look at the lattice strain part E2({ηl} , pext) and its interaction with FE modes

E3({ui} , {ηl}).
E2({ηl} , pext) = Estrain({ηl}) + Ep({η1,2,3} , pext) (13)

E3({ui} , {ηl}) = Eint({ui} , {ηl}) (14)
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Lattice strain is crucial to describe structural properties of FE materials. The strain con-

tains homogeneous and inhomogeneous part, describing the averaged and localized structure

distortion, respectively. Without introducing lattice strain, BTO shows incorrect phase se-

quence as cubic to rhombohedral phase.4 When considering the controversial domain struc-

tures in SnTe films, inhomogeneous strain must be introduced. This requires deepening

studies, however, being off the main issues of this article. Since the considered FE phase

transition is more about the macroscopic properties, we take only the homogeneous part of

the strain to simplify the problem. The strain energy is

Estrain =
N

2
B11(η

2
1 + η22 + η23) +NB12(η1η2 + η2η3 + η3η1) +

N

2
B44(η

2
4 + η25 + η26), (15)

where B11, B12, and B44 are elastic coefficients (they relate to elastic constant C11 via

B11 = C11 ∗ Vcell, etc.), and N is the number of simulated cells. The external pressure pext

is here to consider the lattice mismatch with the substrates, further enabling investigation

on the pressure-temperature phase diagrams. It interacts with strain via

Ep = pext ·∆V = pextV (η1 + η2 + η3). (16)

And the interaction between strain and on-site FE mode is

Eint =
1

2

N∑

i=1

∑

lαβ

Blαβηluiαuiβ, (17)

where Blαβ is the coupling coefficients. Due to cubic symmetry, we have written Eq. (15)

and Eq. (17) with only independent coefficients. Here, B11, B12, and B44 are independent

for the strain energy, and B1xx, B1yy, and B4yz are independent for the coupling energy of

strain and FE modes.

Finally, combining all the terms in Eq. (3)(11)(12)(15)(16)(17), we obtain the total energy

as

E
(3D)
3D-param = Eself + E

(3D)
dipole + Eshort + Estrain + Ep + Eint, (18)

where all the parameters are derived from the first-principles calculations. We shall use

Eq. (18) latter to perform Monte Carlo simulations.

One finite-T FE modes configuration on strained lattice is shown schematically in

Fig. S1. We set a finite temperature T and external pressure pext, allowing FE modes

{ui, i = 1, 2, · · · , N}, lattice strain {ηl, l = 1, 2, · · · , 6} varied to achieve thermal equilib-

rium. Then we do statics on ux,y,z = 〈ui〉x,y,z and {ηl, l = 1, 2, · · · , 6} to tell the properties
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of the system at finite-T . The structural informations are given by the distorted lattice and

displaced atomic positions. Ferroelectric properties are described by the alignments of FE

modes. When they aligned uniformly to one direction, a FE phase is determined and the

magnitude of polarization is given by Eq. (10). And when they aligned randomly with the

statistical average to be zero, a PE phase is determined.

FIG. S1. A schematic of the effective potential. The reference structure (grey solid lines) is

distorted by lattice strain η (orange dashed lines) and FE modes ui i.e. the polarization (green

arrows). Their intra- and interactions are used later to perform the Monte-Carlo simulations.

B. 2D case

Coming to the 2D case, the effective Hamiltonian must be modified to restore the varied

electronic structure. Our main purpose is to build the bridge between bulk and thin films,

upon which understand the abnormal behavior of Tc in SnTe.

A natural choice is to retain the effective Hamiltonian of bulk and introduce some cor-

rections to characterize the own properties of the films. The local terms Eself originate from

the isolated on-site energy of the FE modes. Thereby if the lattice constant and atomic

position remain unchanged, Eself of this site should remain unchanged no matter when its

surrounding sites form 2D geometry or 3D geometry. Edipole would receive changes upon go-

ing to films, however, mainly from the geometry changes (lattice contraction in out-of-plane
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direction and expansion in in-plane direction). The picture of point dipoles at each site

from macroscopic viewing remains unchanged. By definition, the short-range terms Eshort

are mostly affected. The cut in out-of-plane direction leads to electrons redistribution, one

might roughly consider, from original position interacting with out-of-plane neighboring sites

to in-plane neighboring sites.

Therefore, we keep the the form of local terms Eself unchanged, consider only geometry

changes in dipole-dipole interaction terms (from E
(3D)
dipole to E

(2D)
dipole), and count all the other

surface effects in short range terms (keep Eshort unchanged and add corrections in E
(2D)
corr ).

The total of the energy in 2D geometry is written as:

E
(2D)
3D-param ({ui}, η, p) = Eself + E

(2D)
dipole + Eshort + Estrain + Ep + Eint + E(2D)

corr , (19)

where only E
(2D)
dipole and E

(2D)
corr are different from the 3D case. In order to satisfy the pre-

requisite that when increasing the film thickness the correction terms E
(2D)
corr must vanish

spontaneously, we take the form of Ref. [5] and add the exponential decay coefficients to

describe this layer dependency, as

E(2D)
corr (nl) =

∑

α=β
α=x,y

∑

〈i,j〉
j=i±α̂

e−B·nlAij,αβuiαujβ, (20)

where nl labels the number of layers, Aij,αβ describes the short range interactions (exclude

the short part of dipole-dipole interactions) between neighboring sites 〈i, j〉.
Meanwhile, EW2D instead of EW3D should be used to solve the Edipole terms in the

Hamiltonian due to slab geometry. The EW2D summation is also written in three parts

E
(2D)
dipole = Er + Ek + Ecorr, (21)

where Er is the same as bulk, but kspace terms Ek and correction terms Ecorr are different

from bulk, as

Ek =
1

2

N∑

i,j=1

∑

k 6=0

π

L2
eik·ρij

{
(µρi · k)(µρj · k)D(zij)− i[µzi (µρj · k) + µzj(µ

ρ
i · k)]

∂D(zij)

∂zij
− µziµzj

∂2D(zij)

∂z2ij

}
,

(22)

with

D(zij) =
1

k

[
ekzerfc(

k

2κ
+ κz) + e−kzerfc(

k

2κ
− κz)

]
, (23)
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where superscript ρ labels the in-plane components and z labels the out-of-plane component.

And

Ecorr =
2κ
√
π

L2

N∑

i,j=1

µziµ
z
j e
−κ2z2ij − 2κ3

3
√
π

N∑

i=1

µ2
i . (24)

In Fig. S2, we show a test for calculating dipole-dipole interaction via two commonly

used method, EW2D and EW3D. To derive the energy for a same system of xy-periodic

and z-free (ppf periodic boundary condition) film, EW2D can be directly used while EW3D

requires extra treatment. EW3D expand this film to a xyz-periodic structure with a few UC

vacuum (ppp periodic boundary condition). EW3D method will be fast iff the vacuum is not

too large, but rough due to its unconsidered layer interaction errors. When only deal with

in-plane polarization, EW3D reaches convergence with EW2D upon 3UC vacuum. However,

EW3D shows slow convergence for out-of-plane polarization upon increasing vacuum slab

thickness. Considering this, we will use EW2D for 2D calculation to ensure our results.

(a)

(b)

FIG. S2. EW3D and EW2D results for Edipole calculations in film geometry. (a) shows the

in-plane polarization case and (b) shows the out-of-plane polarization case.
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II. COMPUTATIONAL DETAILS

A. DFT calculations

For DFT calculations, we use the Vienna ab initio Simulation Package (VASP) with

projector-augmented-wave (PAW) method.6,7 The PAW valence electron configurations are

4d105s25p2 for Sn and 5s25p4 for Te. The PAW energy cutoff is 850 eV for SCAN functional.

A 12 × 12 × 12 k-point mesh turns out to yield converged results for the Bravais cell of

bulk SnTe (a cubic structure with 4 Sn atoms and 4 Te atoms). We use finite-displacement

method for phonon calculations, as implemented in PHONOPY.8 In Fig. S3, we show the

results with LDA,9 PBE,10 and SCAN functionals.11 LDA yields no soft mode, while PBE

and SCAN yield soft modes. And the shear modes also turn to be a soft mode in SCAN,

which might be crucial for group-IV monochalcogenides,12 and we shall count it in the shear

strain terms of the Hamiltonian. Potential energy curves following the displacement patterns

of the FE mode are then calculated. PBE curves process a shallower well than SCAN. We

think PBE might not be accurate enough to describe the electronic structure of SnTe. Fei

et al. actually have derived non-polar structure for SnTe film using the PBE functional

(Fig. S3(b) in the supplemental information of Ref. [13]), in contrast with experiment.14

Hence, we use SCAN functionals for DFT calculations and later parameterizations of the

effective Hamiltonian.

TABLE S1. Lattice constant by DFT calculations

Functionals LDA PBE SCAN exp.

Lattice constant(Å) 6.24 6.40 6.34 6.32

For film calculations, we also base on this cubic structure and build the supercell with a

vacuum of 19.03 Å along z-direction (out-of-plane [001] direction). The z-grid of k-mesh is

varied in associate with the length of z-direction. As in experiments, the SnTe films inter-

act weakly with the substrates (graphitized 6-H SiC covered by mono-/bi-layer graphene)

through van der Waals interactions which are often viewed as truly 2D materials. Hence

we apply free-standing films, retaining its intrinsic 2D features. This also means the open

circuit (OC) condition should be used for the following Monte Carlo (MC) simulations. The

van der Waals (vdW)-type interactions aren’t introduced to avoid double counting, due to
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the features of SCAN functionals.11 Besides, since strain effects has been included in the

Hamiltonian (see section I), we use the same lattice constant as bulk for films.

In BaTiO3 (BTO), the LDA functional is used for an easier comparison with published

results.1,4 Concerning the fact that BTO has been systematically studied in these reference,

and it is a system when conventional scaling law holds, we will mainly focus on SnTe in later

discussions and resort to BTO only when comparison is needed.

X M R
Wave vector

0.0
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FIG. S3. Phonon spectrum of SnTe via different functionals. (a)-(c) are LDA, PBE, and SCAN

results, respectivelya. Note that non-analytical term correction (characterizing the LO-TO split-

ing) aren’t included here. (d) the potential energy curves from DFT calculations using different

functionals. Since LDA presents no soft mode, here we only show PBE results (in black curves)

and SCAN results (in red curves). The atomic configurations have been displaced following the

patterns of FE mode. We noticed that PBE results in a shallower well than SCAN.

a The non-zero acoustic mode in SCAN results might originate from some bugs of the program codes. We

found this bug reoccurs in phonon calculations of perovskites, hexaferrites, and more materials. Since all

the required informations from DFT calculations are the total energies, we trust in these energies.
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B. Parameters

Here we list the parameters of the effective Hamiltonian for BTO and SnTe from above

first-principles calculations.

TABLE S2. Parameters of the effective Hamiltonian for BTO. Energies are in hatrees in order to

compare with Ref. [4].

Self κ2 0.0691 α4 0.328 γ4 -0.504

Dipole ε 5.24 Z∗Born 10.26

Short j1 -0.0288 j2 0.0393

j3 0.00979 j4 -0.0106 j5 0.00580

j6 0.00492 j7 0.00246

Strain B11 4.76 B12 1.62 B44 1.82

Inter B1xx -2.25 B1yy -0.171 B4yz -0.0888

2D corr A 0.0282 B -0.4958

As a verification, we first independently obtain the parameters of BTO, which are com-

pared with those of Vanderbilt.4 LDA functional is used here for BTO. The parameters for

BTO are listed in Table. S2. One could easily see all our parameters are close to those of

Vanderbilt (Table. II in Ref. [4]).

TABLE S3. Parameters of the effective Hamiltonian for SnTe. Energies are in hatrees in associate

with BTO.

Self κ2 0.0128 α4 0.0140 γ4 -0.00971

Dipole ε 51.9 Z∗Born 19.9

Short j1 -0.00407 j2 0.000402

j3 0.000128 j4 -0.000731 j5 0.000457

j6 0.0000582 j7 0.0000291

Strain B11 6.82 B12 0.0972 B44 1.09

Inter B1xx -0.264 B1yy -0.0270 B4yz -0.0165

2D corr A -0.00722 B -0.376

The parameters for SnTe are listed in Table. S3. By comparing the dimensionless param-
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eters (strain related B11, B12, B44) with BTO, we notice that SnTe tends to rhombohedral

structure. Lowered B12 results in less competition between different direction of lattice

strain, and lowered B44 allows larger shear strain. Since the polarization and size of unit cell

are different for BTO and SnTe, direct comparisons of the magnitude of other parameters

related with FE modes are meaningless. A better choice is to compare their relative value

for each material.15 We shall see for short-range interaction parameter, the numerical rela-

tions are similar for SnTe and BTO. However, the α4 and γ4 are lower and B4yz are larger

in SnTe than BTO. Since competition between different direction is lowered, the tendency

to rhombohedral phase in SnTe should be reserved. Actually, our simulations tell that in

BTO the polarizations of different directions appear in sequence, exhibiting four phases as

cubic to tetragonal to orthogonal to rhombohedral. In SnTe bulk, the polarization appear

simultaneously in all three directions, exhibiting only two phases as cubic to rhombohedral.

C. Monte Carlo calculations

We use the aforementioned Hamiltonian with parameters derived in last subsection. Due

to that most energy terms of the Hamiltonian are localized expect the dipole-dipole inter-

action, we use the single flip algorithm. That is, each Monte Carlo sweep (MCS) consists of

a series of trial moves of the FE modes on each site and the six components of the homoge-

neous strain, in which homogeneous strain components take 20-100 trial moves repeatedly

in one MCS. The step sizes are adapted to control the accept ratio in range of 20%-30%.

For each simulation configuration (cell, temperature, and external pressure), we run at least

200,000 MCSs, in which first 150,000 MCSs are used to ensure thermal equilibrium and last

50,000 MCSs are used for statistics.

The long-range nature of ferroelectricity requires large-scale simulations. Here we take

the simulation cells as 10 × 10 × 10 periodic supercell for bulk (corresponding to a cell

with a = 63.2Å containing 8,000 atoms, which results in unaffordable computation load

for DFT calculations. That’s also why we use a model Hamiltonian method instead of ab

initio molecular dynamics), and 10 × 10 × N xy-periodic z-free slab for N -UC films. The

convergence test for this supercell has been shown in Fig. S4. The errors from the cell

sizes are controlled to a few Kelvin, which are accurate enough to tackle the issues in our

manuscript, telling the thickness dependency of Curie temperature.
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FIG. S4. Convergence test for the simulation cell. 10 × 10 × 10 supercell and 15 × 15 × 15

supercell are in coincidence at low temperature and show a few deviation near the critical point.

10× 10× 10 cell shows ∼10 K difference from 15× 15× 15 cell. In fact, this range of error is far

lower than the difference between bulk and film (several hundreds of Kelvins), or among films of

different layers (several tens to hundreds of Kelvins). Considering 4 times atoms and at least 16

times computation loads with 15× 15× 15 cell, we adopt 10× 10× 10 cell for latter simulations.

III. PRESSURE COMPENSATION

The lattice strain has crucial influence in FE phase transitions. Due to insufficiently

accurate electronic structure of DFT, transition temperature might be far from the correct

value by using the DFT optimized geometry. An exerted pressure is used here to compensate

this error. We determine this compensation pressure by comparing with the experimental

measurements. As shown in Fig. S5, we calculate the phase transitions of bulk SnTe at

different external pressures. We found ∼2GPa gives reasonable Tc for bulk SnTe [Fig. S5].

In the same way, the compensation pressure for 1-10UC films are all set as 1GPa, differ-

ence from bulk being used to count for the substrates strain. This is in agreement with

experiment by Chang et al., which applied substrates with lattice constant slightly larger

than SnTe films. We don’t seek for a more precise value for this compensation pressure

due to the effective Hamiltonian method might have as a few ten Kelvins as systematic

errors. Besides, this compensation pressure is reasonable in its magnitude. That is, SCAN

slightly overestimate the lattice constant, requiring the compensation pressure to be positive
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and small. LDA, however, underestimate the lattice constant, requiring the compensation

pressure to be negative and larger. This is true in our results, since BTO with LDA uses a

-8GPa compensation pressure16, and SnTe with SCAN using a 2GPa compensation pressure

for bulk.

To emphasize, when studying the thickness dependency of Tc in films, threats from the

large extrinsic factor of lattice strain can be ruled out by setting a same compensation pres-

sure in our method. However, the other model methods such as Landau’s phenomenological

model, φ4 model, etc. cannot guarantee this, since strain terms are not considered and

the parameterizations are done in one specific structure. One could see from the strain-

temperature phase diagram in Ref. [13], Tc for 1UC SnSe varies from 64K to 640K among

different strains. This uncertainty actually hinder the exploration of the thickness depen-

dency of Tc. In our method, the built-in strain-pressure relation makes it possible to exclude

extrinsic strain effect and question the intrinsic size effects of SnTe’s abnormalities. Using a

same external pressure, we have show the clearly different tendency upon going from bulk

to thin films in SnTe [Fig. 3(b) in our manuscript].

IV. BULK RESULTS AND P-T PHASE DIAGRAM

Here we process microscopic details of the phase transitions in SnTe bulk. FE modes

and lattice strain are used to determine the Curie temperature. Taking Fig. S5(g) as an

example, we give the Tc equals 147K for bulk with external pressure 2Gpa. Above 147 K,

the diagonal part of the strain tensor is the same and the average of all three components

of the FE modes 〈u〉α=x,y,z are close to zero so as the non-diagonal part of strain tensor

〈η〉i=4,5,6 [Fig. S5(h) and S5(i)]. At 147 K, the magnitudes of the FE modes suddenly jump

and then gradually saturate. This divergence and the equivalence between the polarization

in x, y, and z directions indicate that a rhombohedral FE phase is formed with polarization

along [111]. A more accurate determination of Tc can be done by fitting the critical behavior

of polarization, i.e. FE modes (latter shown in Eq. (28)).

FE modes are viewed as the order parameters in FE phase transition. We can convert it

from Å to C/m2 via

P =
eZ∗Born

V
〈u〉 = 1.26 〈u〉 C/m2

Å
. (25)

Since structural phase transition occurs simultaneously, lattice strain could also be used to
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characterize the phase transitions.

p=0GPa

p=1GPa

p=2GPa

p=2.5GPa

（a） （b） （c）

（d）

（g）

（j）

（e） （f）

（h） （i）

（k） （l）

FIG. S5. The microscopic details of the phase transitions in bulk SnTe under different pressures.

Here we show the results of both original bulk (spontaneous phase transition) and the constrained

bulk (constrain uz = 0 and η3 = η4 = η5 = 0, we shall discuss later in section VI). (a)(d)(g)(j)

shows the magnitudes of FE modes, (b)(e)(h)(k) and (c)(f)(i)(k) shows the magnitudes of diagonal

and non-diagonal lattice strain, respectively.
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Utilizing above informations at different external pressures, we further derive the P -T

phase diagram of bulk SnTe, as shown in Fig. S6. In the pressure range we calculated, cubic

PE phase and rhombohedral FE phase are observed. Increasing the external pressure, the

PE phase will take over the FE region, which is the same as previous studies in BTO.4

More phases might appear in much higher pressure, however, the above parameters are not

appropriate to do these simulations. This is because our effective Hamiltonian take the

Taylor series and the parameters have the predictive power of first-principles if and only if

this expansion is valid. Much higher pressure breaks this expansion and a new reference

structure along with new parameters are required.

PE Cubic

FE Rhombehedral

FIG. S6. The pressure-temperature phase diagram of bulk SnTe. The compensation pressure we

determined is 2GPa for bulk SnTe, which should be shifted when compring with the experiments.

This leads to Curie temperature Tc = 147K corresponding to experiments at 0GPa, where ∼50K

is left to count for the defect effects.

V. FILM RESULTS

Here we process microscopic details of the phase transitions in SnTe films with different

thicknesses, in Fig. S7. The experiments measured the distortion angle instead of the po-

larization. In fact, the distortion angle corresponds to the non-diagonal strain [Fig. S7(c)],
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especially η6 here. Their relation is

∆α = 90◦ − arccos(2ηxy) = arcsin(η6). (26)

Since the distortion angle is small, above equation can be rewritten as

∆α = η6 ·
180◦

π
. (27)

Our simulation gives the distortion angle for 1UC ∆α1UC ∼ 1.2◦ extrapolated to T = 4K,

in agreement with experimental value ∼ 1.4◦. Besides, we also use the following equation to

fit the critical behavior of FE modes [short dash curves in Fig. S7(a)]:

u(T ) =




eA(Tc − T )β, T < Tc;

0, T > Tc.
(28)

To be noted that, we fit the mean square root of the FE modes (for film, that is u =√
(u2x + u2y)/2) instead of the total polarization. This gives the critical indexes in consistent

with the experimental value 0.33±0.05 for 1-4UC.14

TABLE S4. Curie temperature fit for films with different thicknesses.

Layernumber Tc/K A β

1 304 -3.198 0.2758

2 597 -3.116 0.2684

3 562 -3.157 0.2695

4 482 -3.375 0.3024

5 408 -3.410 0.3052

6 362 -3.598 0.3370

8 310 -3.884 0.3886

10 278 -3.817 0.3774

VI. CONSTRAINED BULK SIMULATION

We process a numerical experiment for bulk SnTe. Spontaneously, SnTe bulk has only

two phases, the PE cubic phase and the FE rhombohedral phase. However, the ultra-thin
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films seem more close to an orthogonal phase, which is absent in bulk. By the convenience

of effective Hamiltonian method, we can prepare a constrained bulk (c-bulk). In this c-bulk,

the polarization along z-direction has been constrained to zero, as well as other z-related

components of the lattice strain, namely η3, η4, and η5. Upon decreasing the thickness, the

order parameters characterizing the FE phase transition are unchanged. If we keep the form

of interactions also unchanged, we shall find scaling law valid for this c-bulk. We verify

this in the main article [Fig. 3(b) olive curves in the manuscript]. Besides, since phase O

has higher rank in the C-T-O-R transition sequence, we observe this c-bulk process higher

Tc than the original bulk (Fig. S5). We have showed in the main article, that the Tc of

films without correction terms are approaching c-bulk instead of original bulk. Microscopic

details of the c-bulk results are merged in Fig. S5.
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(a)

(b)

(c)

FIG. S7. The microscopic details of the phase transitions in SnTe films with different layer

numbers. (a) shows the magnitudes of the FE modes. The uz components in this range of thickness

are nearly zero so that we don’t show them for simplicity; (b)(c) shows the diagonal part and non-

diagonal part of the lattice strain, respectively.
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(a)

(b)

FIG. S8. The pressure-temperature phase diagram of bulk BTO. Our results is close to Ref. [4].

We obtain C-T-O-R phase transition with reasonable transition temperatures.
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