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Starting from Shannon’s definition of dynamic entropy, we proposed a simple theory to describe
the transition between different rare event related dynamic states in condensed matters, and used
it to investigate high pressure ice VII. Instead of the thermodynamic intensive quantities such as
the temperature and pressure, a dynamic intensive quantity named dynamic field is taken as the
controlling variable for the transition. Based on the dynamic entropy versus dynamic field curve,
two dynamic states corresponding to ice VII and dynamic ice VII were discriminated rigorously
in a pure dynamic view. Their microscopic differences were assigned to the dynamic patterns of
proton transfer. This study puts a similar dynamical theory used in earlier studies of glass models
on a simple and more fundamental basis, which could be applied to describe the dynamic states of
realistic and more condensed matter systems.

Matters exist in form of states, wherein the physical
properties vary continuously before abrupt changes hap-
pen upon their transitions [1]. Abundant states have
constituted our understanding of matters from differ-
ent aspects, such as the crystal states characterized by
the atomic structures [2, 3], and the superconductors
and charge density waves characterized by the electronic
structures [4–7]. Recent years have witnessed consider-
able progress of theoretical methods on simulating these
states, especially the former, along with thorough ex-
ploration of the rare events and their dynamic proper-
ties [8, 9]. Here, rare events mean dynamic activities oc-
curred out of equilibrium and with constraints, e.g. atom
A cannot move until atom B move out of the way [10],
and ice rule governs the arrangement of protons [11]. De-
scription of these dynamic states, constraints, and their
transitions using the conventional thermodynamical lan-
guage of equilibrium states, however, is difficult.

One prominent example of such problems, when rare
event related dynamic properties are crucial, exists in
high pressure (P ) water. At P s ranging from 2 GPa
to 80 GPa and temperatures (T s) of a few hundreds
Kelvins, its states of matter are dominated by several
similar body-centered-cubic (bcc) structures, e.g. ice VII,
dynamically disordered ice VII (dynamic ice VII), and su-
perionic (SI) ice [12–20]. Conventionally, these states can
be attributed to solid with atoms localized in the crys-
talline sites (Fig. 1(a)) or liquid with atoms travelling er-
godically over the whole configurational space (Fig. 1(b)).
The so-called dynamic ice VII, however, present an in-
between feature, i.e. protons are localized on their sites
but can occasionally hop to another ones in a timescale of
picoseconds and longer (Fig. 1(c)). It was considered as
a distinct state from ice VII in earlier studies (Fig. 1(d)),
due to the occurrence of dynamical translational disor-
dering (proton hopping along hydrogen bonds) [13, 15].
One may intuitively interpret this as the protons cannot

be transferred in ice VII and can in dynamic ice VII.
However, this criterion is questionable, as the structures
of the bcc skeleton of oxygens remain the same and there
is no transient change in the structural order or thermo-
dynamic properties (Fig. 1(e) and in Refs. [21–23]). A
paradox arises: if the timescale is long enough, proton
transfer can also occur in ice VII. Consequently, ice VII
and dynamic ice VII should be considered as a single
state of matter where proton transfer can occur in the
long time limit, though with a large numerical variance
in the transfer rates. The answer to this paradox is still
absent.

In this article, we put the transition between different
bcc ice states in a rigorous footing of dynamical transi-
tion. Starting from Shannon’s definition of the dynamic
entropy, a simple mathematical form of dynamic par-
tition function is derived, based on which a dynamical
theory is presented. Dividing the space into pieces of
components, the atomic trajectories of protons are de-
composed into intra-component vibrational motions and
inter-component diffusive motions. The dynamic field,
a central quantity in the dynamic partition function, is
taken as the controlling variable for the inter-component
motions. This field can reveal the different patterns of dy-
namic motions related to dynamic constraint and hence
the transitions between dynamic states. In the simula-
tions, we derived its values for each P by mapping to a
constructed referenced system. Two states were discrim-
inated using the dynamic entropy versus dynamic field
curve in the region of static and dynamic ice VII, and
a transition P is obtained by approaching the simula-
tion results to the long time limit. And the mechanism
underlying this transition is further detailed.

We shall start with the description of the dynamic
properties. In previous studies, diffusion coefficient was
taken as the dynamic order parameter in discriminating
static and dynamic ice VII [9, 24–26]. Considering the
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FIG. 1. (a)(b) Solid, liquid, and (c) the in-between state. (d)
The phase diagram of bcc ice. There are well-defined solid
and liquid states in the shadowed region, while in the white
region the boundaries between ice VII, dynamic ice VII, and
SI remain controversial. (e) Density and thermodynamic state
function at 500 K. Inset: bcc ice structure. In the bcc skeleton
formed by oxygen (red), protons intersperse in the covalent
sites (blue) of neighboring oxygen pairs. The equivalent sites
(green) can be occupied through transfer motions. The other
sites (grey) consist another hydrogen bonding network.

rare event nature of proton transfer at low T s, we resort
to a fundamental property, the proton motions. There
are two types: (1) liquid-like diffusive motion as proton
transfers to another equivalent site; (2) solid-like local-
ized motion as proton oscillates around its own equilib-
rium site. The essential dynamical information is muffled
by thermal noises, since the diffusive motions are rare
compared to the localized motions. In order to high-
light the diffusive motions and summarize the localized
motions, the concept of “components” is introduced [27].
One component is an ingredient of the phase space, which
is composed by a close set of neighboring phase points
containing a local minimum of the potential energy sur-
face (PES):

Ω = ∪αΩα, with Ωα = {(x,p) ∈ Ωα}. (1)

Ω represents the whole phase space and Ωα is the com-
ponent. The components are assumed to have confine-
ment condition (atoms stay in one component for a long
time) and internal ergodicity (equilibrium statistics en-
sured for intra-component motion) [27]. They are de-
fined using Voronoi decomposition, by constructing the
Wigner-Seitz cell of the equivalent sites of the same kind
of atoms [28]. Upon this, we call each inter-component
hopping an activity, and hence define the activity rate k
as the number of activities K occurred in a certain ob-
servation time tobs, with k = K/tobs. Extensive dynamic
quantities scale with tobs, but when no ambiguity exists,

we omit tobs in the equations.
The core quantity to describe a system is its partition

function and the relevant degrees of freedom (DOFs).
Thermodynamic intensive quantities, such as T and P ,
are the acknowledged choice to identify the equilibrium
state of a system and hence to reveal how thermodynamic
phase transition occurs. In bcc ice, however, diffusion co-
efficient presents gradual changes in a wide range of T s
and P s, which are accumulated to qualitative changes,
while evident change in structure order and state func-
tion cannot be observed. This implies that an extra
DOF other than T and P should be crucial, and a dy-
namic form of the partition function should be resorted
to. Analogy can be seen in glass transition, where su-
percooled fluid is prepared via rapid cooling and T does
not play a fundamental role [29]. To denote this extra
DOF, we use “dynamic field”, a term proposed in glass
transition studies as the intensive quantity [30], and the
dynamic activity as the extensive quantity. This field,
denoted by s, is introduced first as an auxiliary field for
enhanced/reduced sampling in analyzing the dynamics
of each (T, P ) [31–36]. Interpreting glass transition as
a space-time phase transition, Hedges et al. proposed
that s is its controlling variable [34]. But this s is a pure
predefined mathematical device, so that this scheme is
limited to ideal spin or glass former models. We derive
the value of s for each (T, P ) by mapping to a referenced
systems and hence extend the application of this dynam-
ical theory to realistic bcc ice, as detailed later.

Following the thermodynamic convention, we write the
dynamic partition function in form of the sum of proba-
bilities to find system in particular dynamic states, as

Z(s) =
∑
K

p(s,K), (2)

where the partition according to K is applied [37].
Eq. (2) becomes Z0 =

∑
K p0(K) when s = 0, where

p0(K) is the unbiased distribution without artificial sam-
plings. When assigning finite s, p(s,K) takes the form
p0(K)e−s·K by comparing with the thermodynamic for-
mula [34, 38, 39]. Here we note that an elegant math-
ematical form of both the thermodynamic and dynamic
partition functions can be derived using merely the in-
formation theory [40]. According to Shannon [41], the
dynamic entropy within tobs is defined as

SD(s) = −
∑
K

p(s,K) ln p(s,K). (3)

A reasonable p(s,K) should give statistical results con-
sistent with the observed ones, i.e. p(s,K) and 〈K〉s =∑
K p(s,K)·K must conform to p0(K) and K0. The vari-

ation of p(s,K) subjected to the requirements of the least
bias estimation from known results and the maximum of
entropy SD [40] is
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δ

{
SD(s) +

∑
K

λ1,K [p(s,K)− p0(K)] + λ2 [〈K〉s −K0]

}
=
∑
K

δp(s,K) {−(ln p(s,K) + 1) + λ1,K + λ2K} = 0, (4)

which leads to

p(s,K) ∼ e−(λ1,K−1)−λ2K ≡ p0(K)e−s·K . (5)

Here λ1,K and λ2 are the Lagrange multipliers of con-
straint, and we conclude the explicit-K part by defining
the field s = λ2 and the implicit-K part by p0(K). In so
doing, the dynamic partition function in form of

Z(s) =
∑
K

e−s·Kp0(K) (6)

is naturally obtained.
The dynamic field can reveal the intrinsic correspon-

dence among different thermodynamic configurations.
Dynamic properties are fundamentally controlled by s,

through 〈K〉s = ∂Z(s)
∂s . Therefore upon artificially chang-

ing s, Hedges et al. claimed that for each specific (T, P )
the system would experience a transition between an ac-
tive state and an inactive one [34]. Beyond this, we
realized that similar s-dependencies of Z(s) among dif-
ferent (T, P )s can reveal their internal connection. To
quantify this, we resort to a referenced partition func-
tion Zref, which contains all the dynamical information
within (T, P ) region of the same bcc-ice structure. In
the light of thermodynamics, where ZNVT is given by
the sum of a series of NV E ensembles with weight e−βE ,
we construct Zref as

Zref =
∑
(T,P )

Z0,(T,P ) · e−β(F+PV ). (7)

Z0,(T,P ) is the s = 0 case of Eq. (6), and e−β(F+PV ) is its
weight. By mapping to Zref, the referenced dynamic field
sref is determined for each (T, P ). The rule is to ensure
that the expectation value of the referenced s-ensemble
at s = sref(T, P ) with Zref is the same as its unbiased
observation at s = 0 with Z0, (T,P ), i.e.

〈A〉s=0, Z0,(T,P )
= 〈A〉sref(T,P ), Zref

. (8)

This scheme enables learning the transition between dif-
ferent dynamic states solely from sref.

In order to sample the trajectory space, i.e. capture the
activities and further derive Zref and sref, we performed
extensive molecular dynamic simulations. This is enabled
by resorting to a machine learning potential [26, 42], and
simulations consisted by samplings up to 1E7 timesteps
and with the timescale of a few nanoseconds for each
(T , P ). For more details of these simulations, please see
our supplemental material [43]. The protons are judged
which component they belong to for each timestep, as
shown in Fig. 2(a)-(c). The trajectories are decomposed

(a)

(b)

(c)

(d)

(e)

Site #1
Site #2

C
om

po
ne

nt
d si

te

0

0.04

0.08

#1

#2

Timestep (0.2fs)
0 200 400 600 800 1000

Inter motion
Intra motion

0.0

1.0

2.0

3.0

S D
 (n

at
.)

10 20 30 40 50 60 70
P (GPa)

p 0(K
)

0.0

1.0

0.2

0.4

0.6

0.8
10 GPa
20 GPa
30 GPa
40 GPa
50 GPa
60 GPa
70 GPa

0 step
1E3 steps
1E4 steps

0 20 40 60
P (GPa)

In
ac

tiv
e 

Si
te

 R
at

io 1

0

0 10 20 30 40
K (times per 10,000 steps)

Component #1 Component #2

FIG. 2. (a) Schematic of the potential energy surface (PES)
of proton transfer. (b) the realistic trajectory in coordinate
space, and (c) the trajectory in component space. dsite is the
distance of the proton to its equilibrium position inside each
component, in the unit of fractional coordinate of the simula-
tion cell. (d) p0(K) at different P s with tobs = 10, 000 steps.
The inset of (d) shows the tobs-dependence of the percentage
of inactive sites for K(t) = 0. (e) SD computed from p0(K).
The dashed lines and shadowed region are guided for the eye.

into intra-component localized motions (Fig. 2(c), ver-
tical solid lines), and inter-component diffusive motions
(Fig. 2(c), dashed lines). We count the number of activi-
ties at each component and present the total distribution
p0(K) in Fig. 2(d). At 10-30 GPa, p0(K) concentrates at
K = 0 and fall sharply at non-zero values, corresponding
to the fact that few proton transfer happens during our
simulations. Above 40 GPa, there are finite rate peaks,
which extend to higher values with increasing P s, indi-
cating easier proton transfers. Consistent with this trend,
the inactive sites (K = 0) are dominated at low P and
gradually drop to zero at high P s (the inset of Fig. 2(d)).
The crucial role of tobs will be discussed later. SD is also
computed, telling two distinct regions corresponding to
ice VII and dynamic ice VII (Fig. 3(e)). However, the
gradual transition with wide P range (Fig. 3(e), shad-
owed region), which does not disappear with increasing
the simulation scale, is beyond the scope of P -controlled
phase transition (where the transition should be abrupt
in P ). In other words, P can reveal the dynamic differ-
ence, but a native dynamic perspective is more requisite.

One unique perspective in describing such a transition
is offered by s. The exponential factor e−s·K in Z(s)
play the role of raising the contribution of inactive com-
ponents and reducing that of active ones. When s is
increased (decreased), the activities are suppressed (en-
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hanced). This trend applies to all simulated P s. How-
ever, there are two different s-dependencies for Z(s) and
activity rate 〈k〉s. These dynamic quantities are insen-
sitive to the change of s at low P s while they can be
motivated by lowering s at high P s, as shown by the al-
most vertical lines at low P s and the finite slopes at high
P s in Fig. 3(a) and 3(b). This qualitative difference can
be more clearly seen via the state function SD versus sref
curve in Fig. 3(c), where sref is defined for each P using
Eq. (8) as shown in Fig. 3(b). There are two distinct re-
gions: a large-sref region with steady and nearly zero SD,
mapping to low P s; and a small-sref region with rapidly
increased SD, mapping to high P s (Fig. 3(c)). Besides,
we notice that the change in slope becomes sharper with
increasing tobs. Due to the limited sampling scale, the
transition point is practically determined by the intersec-
tion of extrapolated lines of two ends at finite tobs [43].
Its dependencies on tobs can be well-fitted by an expo-
nential form (inset of Fig. 3(c)). The converged value for
t → ∞ is sref = −0.37, which maps to P ≈ 32GPa. We
note that this P is consistent with Ref. [24].

The behavior of SD towards long time limit roots in
homogeneouity. When system is dynamically homoge-
neous, the activities are globally uniformed. According
to the central limit theorem, p(K, tobs →∞) approaches
a normal distribution, as

p(K, tobs) ∼ N (K(tobs) = ktobs, σ
2
tobs

)

=
1√

2πσtobs

exp

[
− (K − ktobs)2

2σ2
tobs

]
(9)

where k is the rate at global equilibrium. If there is
a finite characteristic timescale t0 within which all the
unique dynamic activities have occurred, SD will be sat-
urated when tobs � t0. Specifically for tobs = mt0, we di-
vide its history into m pieces, as K(tobs) =

∑i=m
i=1 Ki(t0).

The resulting distribution is related to t0, as

p(K, tobs) ∼ N
(
ktobs, σ

2
t = [σ2

0t
−1
0 ]tobs

)
, (10)

where σ2
0t

−1
0 is a characteristic constant of the system.

Using Eq. (10), the dynamic entropy can be derived, as

SD(t) =
1

2
ln t+ ln

[√
2πeσ0t

− 1
2

0

]
. (11)

Otherwise, S(tobs) would be in-between the ideal static
limit as O(0) and homogeneous limit as Eq. (11). We
call this as “dynamically inhomogeneous”. At high P s,
SDs converge to theoretical results of Eq. (11), as shown
in Fig. 3(d). The characteristic timescale t0 is decreased
towards the active end, consistent with the fact that sref
is low. While at low P s, SDs increase slowly and are
greatly off the ln tobs trend, indicating that the system is
dynamically inhomogeneous. When tobs →∞, the active
end remain the shape, as their SDs only differ from a non-

time-dependent term ln
[√

2πeσ0t
− 1

2
0

]
, and are uniformly
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FIG. 3. (a) The partition function of the s-ensemble and (b)
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towards long time limit. (d) The tendency of SD,(T,P ) on tobs.
The dashed lines show theoretical results of Eq. (11).

lifted by 1
2 ln tobs. In contrast, the inactive end remains

flat, and thereby the crossing region witnesses a gradual
change. These confirm the occurrence of a transition
between two dynamic states and its high order nature.

Underlying the transition revealed by s, the mecha-
nism of proton transfer is detailed via analyzing the PES,

0.1

(a) (b)

(c) (d)

H1

Single Transfer

H2
H1 H2

Cooperated Transfer
(eV)

Neighbor

FIG. 4. Schematic of the dynamic constraint. When a single
transfer occurred (solid line in (a)), there can be two paths
to restore the ice rule: (a) the retrieving motion (dashed line)
upon strong constraint and (b) the collective motion upon
loosen constraint. (c)(d) show the PES upon the transfer of
H1 and H2 at 10 GPa and 70 GPa, respectively.
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where the dynamic constraint is found to be of central
importance in inducing different dynamic patterns. The
realistic barrier does not produce absolute confinement,
thus the proton is accessible to another component at
tobs →∞. When this happens, the system is driven to an
energetically uncomfortable state with ice rule temporar-
ily broken (Fig. 4(a), solid line). There are two routes
to restore the ice rule, either via a retrieving motion of
the same proton (Fig. 4(a), dashed line) or via collective
motions involving more protons (Fig. 4(b), solid line).
When sref is large and the dynamic constraint is strong,
the system prefers the former. This can be visualized by
the corresponding PES in Fig. 4(c), as the neighboring
protons are not willing to join the transfer from the en-
ergetic point of view. A contrast case is seen when sref is
small and the dynamic constraint is loosen, the system
prefers the latter. As shown by the flat bottom and col-
lective preference in Fig. 4(d), the neighboring protons
are allowed to participate in a collective transfer [30, 44].
These can also be seen via the coordination number of
oxygens shown in the supplemental material [43], as oxy-
gens with 4- and 0- bonded protons which seriously dis-
obey the ice rule only appear at high P s.

Structure solely determines dynamics in most cases,
naturally establishing a convention that thermodynamic
quantities native for phase transitions emerged from equi-
librium structures are used to describe transition between
different dynamic states. However, this fails when rare
events are of central importance. Our scheme presents
the power of dynamic field in revealing the nature of the
transition between dynamic states characterized by dif-
ferent patterns of activities. Beyond this, the dynamic
field offers a numerical approach to access the intrinsic
dynamic constraint. The transition behavior via chang-
ing the dynamic field can provide guidance on where dif-
ferent dynamic mechanisms exist for subsequent explo-
rations via experiments or simulations. It should also be
noted that such analysis does not only apply for bcc ice.
Considering the ubiquity of dynamic constraint, we be-
lieve this theory would bring new understanding to the
fundamental question of the dynamic nature in a wide
range of condensed matters.
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