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ABSTRACT
Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water
clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and
rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades. This Perspective
focuses on two path-integral based tunneling splitting methods whose computational cost scales well with the system size, namely, the ring-
polymer instanton method and the path-integral molecular dynamics (PIMD) method. From a simple derivation, we show that the former is
a semiclassical approximation to the latter, despite that the two methods are derived very differently. Currently, the PIMD method is consid-
ered to be an ideal route to rigorously compute the ground-state tunneling splitting, while the instanton method sacrifices some accuracy for a
significantly smaller computational cost. An application scenario of such a quantitatively rigorous calculation is to test and calibrate the poten-
tial energy surfaces of molecular systems by spectroscopic accuracy. Recent progress in water clusters is reviewed, and the current challenges
are discussed.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146562

I. INTRODUCTION

Water is one of the most ubiquitous and vital substances on
Earth. It is widely involved in chemical reactions and the cycles of
matter and heat. The seemingly simple hydrogen atoms and oxygen

atoms form relatively strong intermolecular hydrogen bonds and a
complex hydrogen bond (HB) network. Therefore, water has many
abnormal properties and abundant phases.1–5 Conventionally, these
properties and phases were understood using the ball-and-stick
model, i.e., electrons were treated using quantum mechanics, which
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results in chemical bonds, and the nuclei were treated as classical
particles, which form the skeleton of the structures. In this scenario,
difficulties for theoretical descriptions of water arise from the need
to explore the large HB network and get accurate HB interactions. In
recent years, advances in computer simulation methods mean that
quantum mechanical descriptions of the nuclei are also possible,6–11

opening a door for studies of new exciting quantum effects of water.
Assisted by high-resolution experimental techniques, such nuclear
quantum effects (NQEs) had been found to be highly relevant to a
series of nontrivial properties.12–21 The tunneling motion of hydro-
gen atoms, which involves the breaking and reforming of hydrogen
bonds, is a prominent example.21–24 However, the condensed nature
of bulk, which results in broadening of its vibrational and rota-
tional spectra, makes it impossible for one to obtain high-resolution
experimental data to decipher details of these processes in its bulk
phases.

Water clusters provide a good entry point to circumvent this
problem25–27 as its small size allows us to capture the specific hydro-
gen movement patterns without being obscured by the broadening
caused by a large amount of chaotic movement like in the bulk phase.
The high-resolution rovibrational spectrum of gas-phase water clus-
ters can give much more precise and detailed information, where
the splittings of the rovibrational energy levels reveal different tun-
neling behaviors of hydrogen atoms.28–35 These splittings have been
investigated for decades. Permutation-inversion symmetry is useful
for assigning the splittings.36 At very low temperatures, the geometry
of the clusters can only be rearranged by tunneling motions, which
results in equivalent conformations in different wells being con-
nected through comparatively low barriers. Splitting of the energy
levels happens because of couplings of these degenerate states.37 A
molecular symmetry group can be generated by these permutation-
inversion operation elements corresponding to the geometry rear-
rangements. Then, the splitting pattern can be described by the
irreducible representations of this group, and the splitting sizes are
determined by the ease of tunneling motions.38

With the splitting sizes calculated, one can compare them with
the experimental observations and analyze the atomic details of the
tunneling paths. The accuracy for the value of the splitting sizes
depends on two factors, i.e., the quality of the potential energy sur-
face (PES) and the reliability of the method with which tunneling
is described.39 Assuming that a rigorous and practical method is
available to address the latter factor, experimental values of the split-
ting sizes can then be used as new calibrations for the improvement
of the water potential.40,41 This is not only essential for simula-
tions of bulk water in a more general sense but also in the cases
when NQEs are of interest.41–46 Therefore, it seems that we have
reached at a point in time when both the experiment and the first-
principles based PES are almost ready, but there is still a lack of a
rigorous and practical method to describe the quantum mechanical
tunneling of the nuclei. With such a method, one can first calcu-
late the ground-state splitting to understand the tunneling behavior
more deeply and then analyze the finer structure of the infrared
spectrum. In turn, the experimental splitting sizes serve as cali-
brations to further improve the quality of the water potential.40,41

Positive feedback from the quality of the PES to the theoretical
method in describing tunneling, and vice versa, will push theoret-
ical descriptions of water systems to the final stage with dreamed
accuracy.

Along this route, several methods have been developed to
find the tunneling paths and to calculate the splitting sizes. To
date, only dimer splittings can be calculated by directly solving the
Schrödinger equation in full dimensions47 due to the unfavorable
scaling of the cost with system size. Diffusion Monte Carlo (DMC) is
a promising method48,49 but suffers from the fixed-node approxima-
tion especially in the case of larger clusters and high-excited levels.
The Wentzel–Kramers–Brillouin (WKB) method combined with
the group theory is convenient in describing the splitting pattern50–53

but lacks accuracy in predicting the splitting sizes due to the approx-
imations made in the method and the a priori specified tunneling
path. The ring-polymer instanton method can avoid the latter prob-
lem by optimizing a minimum-action path as the optimal tunneling
path in full dimensionality.54–57 It is also applicable to large water
clusters, thanks to the relatively inexpensive computational cost and
favorable scaling with system size. Now, it is becoming a main-
stream method and has been used to calculate the finer structure of
the splitting spectrum.58,59 However, the steepest-descent approxi-
mation made in the instanton method makes it short of spectro-
scopic accuracy for systems with anharmonic soft modes.35,56 For
example, previous studies have exhibited departures from the exper-
imental value within a factor of two and little dependency on the
different water potentials used.35,56 To cure this problem, a path-
integral molecular dynamics (PIMD) method making use of density
matrix elements has recently been developed by Althorpe and co-
workers.60–63 Their pioneering work showed that it can give an
accurate splitting size of the acceptor path in the water dimer com-
pared to benchmark results and showed promising results for larger
water clusters as well.63 Yet, there was still room for improvement,
e.g., resolving the relatively large sampling errors and other issues.
Our recent theoretical work has reproduced the experimental values
of the torsional tunneling splitting in a water trimer, which fur-
ther demonstrated the potential of the PIMD method in providing
the most accurate tunneling splitting results to date for large water
clusters.64

This Perspective focuses on these two path-integral based
methods, i.e., ring-polymer instanton and PIMD. In Sec. II, we
review the two methods in detail and then in Sec. III show that
a connection exists between them, i.e., the instanton is exactly a
steepest-descent approximation of the PIMD method although they
originate from the quantum partition function and density matrix
element, respectively. In Sec. IV, we introduce the progress on accu-
rate calculations of the tunneling splittings in water clusters from
the dimer to hexamer one by one and discuss the challenges in deci-
phering more finer structures of the spectra. Section V concludes our
Perspective.

II. PATH-INTEGRAL BASED METHODS
ON GROUND-STATE TUNNELING SPLITTING
A. Ring-polymer instanton method

Here, we briefly introduce the tunneling splitting derived in
the formalism of the ring-polymer instanton by Richardson and
Althorpe, first in a simple two-degenerate-well system55 and then
in a multiple-well system.56

A molecular system with two degenerate wells has its ground-
state energy levels E0 split by the mixing of the two states due to
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tunneling. In the low temperature limit, the contribution of higher
energy levels can be neglected. This leads to

lim
β→∞

Q(β)
2Q0(β)

≈
e−β(E0−Δ/2) + e−β(E0+Δ/2)

2e−βE0

= cosh(
βΔ
2
), (1)

where Q(β) (2Q0(β)) is the partition function of the system with
(without) the inclusion of tunneling, E0 ± Δ/2 are the energy levels
split by the tunneling, and β is 1/kBT. This expression provides a
link between the tunneling splitting and the partition functions of
the system.

Q0(β) is easy to evaluate. Applying the steepest-descent
approximation, it corresponds to the situation of a collapsed ring-
polymer in the bottom of one of the wells. This results in a simple
harmonic vibrational partition function. With βN = β/N, N being
the number of beads, one has

Q0(β) ≃ ∏
k

1
βN h̵ωk

= (
1
βN h̵
)

N 1
√

det G0
. (2)

ω2
k are the eigenvalues of the mass-weighted Hessian of the collapsed

ring-polymer, the elements of which are

(G0)ii′ =
2δii′ − δii′−1 − δii′+1

(βN h̵)2 + ω2
s δii′. (3)

The first term comes from the spring interaction between the adja-
cent beads. ωs is the harmonic frequency of the well. The formulas
in this subsection are for one-dimensional systems but can be easily
generalized to realistic systems.

Unlike Q0, Q corresponds to the partition function of the entire
double-well region with the barrier included due to the existence of
tunneling. Again, applying the method of steepest descent to Q(β),
one gets a saddle point in the ring-polymer space. This results in the
instanton, i.e., a closed trajectory in the imaginary time that connects
the two wells over a barrier with the least action. In the low tem-
perature limit, with infinitely long imaginary time βh, the instanton
trajectory spends most of its time staying in the wells and passes the
barrier occasionally. Such a pass is called a “kink.” Each kink process
requires a finite time, which can be ignored compared to the infinite
total time. As will be seen in Sec. III, this finite time is of fixed size
and can be defined as an imaginary “tunneling time.” The most sim-
ple trajectory involves two kinks to form a closed orbit. If no kink
occurs, it will fall back to the situation of Q0. In the ring-polymer
formalism where a large number of N beads are used to uniformly
discretize the total imaginary time βh, most beads would stay in the
wells and just a few on the barrier describing kink processes. One
example is shown in Fig. 1. A finite number of M beads is needed
for a “one kink” process, marked with hollow circles. The instanton
trajectory in the figure contains four kinks, and each kink is exactly
the same. In the gap between the kinks, it will stay for any length of
imaginary time, which is equivalent to an arbitrary number of N1,
N2, N3, and N4 beads in well a or b, represented by the dashed lines.
This leads to N1 +N2 +N3 +N4 + 4M = N, where N ≫M.

As the beads in the wells do not contribute to the action, the
more the kinks in a trajectory, the greater the action. In the low tem-
perature limit, contributions from such multiple-kink trajectories as

FIG. 1. A schematic diagram of an instanton trajectory composed of four kinks in
the ring-polymer formalism. The red curve represents the potential of a double-well
system. The blue circles represent the beads connected by springs in the ring-
polymer, forming a discrete instanton trajectory. The process from a to b through
the barrier is called a kink, indicated by the M hollow circles. In order to be able to
be seen clearly, we draw the four kinks separately, while, in fact, they are the same
and completely overlapped. Between the kinks, a large number of beads stay in
the wells indicated by the black dotted lines.

the one shown in Fig. 1 are non-negligible. Enumerating all such
trajectories, one obtains

Q(β) =
∞

∑
n=0,even

2Nn

n!
Qn(β), (4)

where Qn(β) represents the contribution from a trajectory contain-
ing n kinks. The prefactor is the number of ways of arranging n kinks
in a ring-polymer of N beads. Given that N is large, Cn

N ≃ Nn
/n!. A

trajectory can start at well a or well b, which contributes a factor of
two. Only even numbers of n are included in the sum since otherwise
the trajectory would not be closed. In the β→∞ limit, the kink pro-
cesses will be fully separated by the long stay in wells, which allows
us to treat these kinks as isolated and equivalent. Meanwhile, Qn(β)
are to be divided by Q0 as shown in Eq. (1); the contribution of the
beads in wells shall be offset. At last, Qn(β) is only related to n (the
number of kinks) and the contribution of one kink (donated as θ)
through

Qn

Q0
= θn. (5)

This θ can be calculated by a linear polymer composed of finite
M beads connecting the two wells from a to b. The potential energy
for this linear polymer is in a familiar form,

UM(r) =
1

2(βN h̵)2

M−1

∑
i=1
(ri+1 − ri)

2
+

M

∑
i=1

V(ri). (6)

We wrote
√

mri as ri to shorten the notation. A one-dimensional
model with mass m is considered for simplicity. With these
treatments, the action reads

Skink = βN h̵UM(r̃). (7)
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FIG. 2. Red points outline the energy of beads in the kink of the anti-geared tunnel-
ing in a water hexamer prism. Many beads collapse in the bottom of the wells with
the same zero energy. The wave-like packet composed of beads on the barrier
can move freely since it corresponds to a zero-frequency mode.

A stationary-state search algorithm can be used to find the minimum
point r̃ of this action. The frequency of the wave-like mode, which
corresponds to the case of a cyclic permutation of all beads moving
along the barrier simultaneously (as shown in Fig. 2), tends to be
zero when T → 0. Each kink has such a mode since they are assumed
isolated.

When applying the method of steepest-descent to Qn, these
zero-frequency modes should not be integrated out by the Gaus-
sian integral. They donate a factor of (βN h̵Skink)

n/2 to the partition
function, and the resulting Qn reads55

Qn(β) = (
1

2πβN h̵2 )

N
2

(βN h̵Skink)
n
2∏

k

′

√
2π
βNη2

k
e−nSkink/

̵h. (8)

The first factor (2πβN h̵2
)
−N/2 comes from the integration of the

kinetic energy term. η2
k are the eigenvalues of the mass-weighed

Hessian matrix G of the instanton. The prime indicates that the
n zero frequencies are excluded from the product and replaced by
(βN h̵Skink)

n/2. This Qn also reads

Qn(β) = (
1
βN h̵
)

N−n

(
Skink

2πh̵
)

n
2 1
√

det′G
e−nSkink/

̵h. (9)

The fluctuation term
√

det′G describes the local curvature per-
pendicular to the instanton path, which comes from the Gaussian
integral. It is the embodiment of the steepest-descent approxima-
tion. Because the kinks are separated and isolated by a large number
of beads, the fluctuations of the beads in the wells can be offset by G0
through

√
det′G

√
detG0

= Φn, (10)

where

Φ = (
det′J
detJ0

)

1
2

, (11)

J is the mass-weighed Hessian of the linear polymer and J0 is the
equivalent Hessian for the non-tunneling system with M beads
collapsed in a well.

Finally, one has

θ =
βN h̵
Φ

√
Skink

2πh̵
e−Skink/

̵h. (12)

From Eqs. (4) and (5), the ratio of the partition functions is

Q(β)
2Q0(β)

=
∞

∑
n=0,even

Nn

n!
θn
= cosh (Nθ). (13)

β→∞ is always required in the derivation. Comparing with Eq. (1),
one can get the final expression for tunneling splitting of a double-
well system,

Δ =
2
βN

θ =
2h̵
Φ

√
Skink

2πh̵
e−Skink/

̵h. (14)

B. Tunneling splitting in a multi-well system
Let’s now consider tunneling splitting in a molecular system

with G degenerate wells. Similar to the double-well system, mixing of
these G states allowed by tunneling makes the ground-state energy
E0 split into a set of G levels {Eν}. Equation (1) generalizes to

lim
β→∞

Q(β)
GQ0(β)

= lim
β→∞

1
G

G

∑
ν=1

e−β(Eν−E0). (15)

Again, utilizing the method of steepest descent, the full system par-
tition function Q(β) in the low temperature limit can be evaluated
by the sum of the contribution of various instanton trajectories with
different numbers of kinks. However, this time, the orbit does not
locate on a single barrier. Any two of the G wells are connected by
a unique tunneling path unless the barrier is very high to allow tun-
neling to occur. These tunneling paths can be marked as different
kinds of kinks. Contribution of a closed instanton trajectory with
n kinks must include all possible arrangements starting from a well
and returning to this well through n kinks.

In other words, all kinds of kinks have the same opportunity to
take part in the trajectories. If one defines Qn,ν as the contribution
of the closed trajectories of n kinks that start and end at well ν, the
partition function can be written as

lim
β→∞

Q(β) =
G

∑
ν=1

∞

∑
n=0

Nn

n!
Qn,ν. (16)

To evaluate Qn,ν, a concept of connected graph, adjacency matrix A,
is introduced. A kink connects two wells through a barrier. The ele-
ment Aλμ is the number of such tunneling paths that connect well λ
and well μ directly. In general, Aλμ is equal to 1 or 0; however, there
are some special cases where there are multiple symmetrical paths
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connecting λ and μ.56 An example of such path is shown in Fig. 3.
The red circles represent the degenerate wells. They are connected
by solid lines if tunneling paths exist between them; then, the corre-
sponding Aλμ would be non-zero.∑G

κ=1 AλκAκμ provides the number
of connections composed by two kinks that start at λ and end at μ via
an intermediate κ. Similarly, (An

)λμ contains all the arrangement of
n kinks connecting λ and μ. With the help of Nn

/n!, all the closed
n-kink trajectories that start and end at the same well ν can be found
by (An

)νν. The example in Fig. 3 shows a six-kink trajectory of the
instanton. (A6

)νν can help to traverse all possible connections of the
kinks.

After finding all the trajectories, one has to consider their con-
tribution to the partition function. As in Eq. (5), the contribution of
a trajectory is the product of the contributions of all n kinks. Here,
it is assumed that there is no coupling between different kinds of
kinks. One can take wells λ and μ as a double-well system, and θλμ
has exactly the same form as θ in Eq. (12). Then, the contribution
of a trajectory is the product of corresponding θλμ. With the help
of adjacency matrix A, one can enumerate all possible sequences to
obtain Qn,ν. A Hückel-type tunneling matrix W is defined for this
purpose,

Wλμ = Aλμhλμ, (17)

where hλμ = −θλμ/βN . Similar to Eq. (5), one has

Qn,ν

Q0
= [(−βN W)n

]νν. (18)

Combining with Eq. (16), one further gets

lim
β→∞

Q(β)
GQ0(β)

=
G

∑
ν=1

∞

∑
n=0

Nn

n!
1
G
[(−βN W)n

]νν

=
1
G

tr[e−βW
]. (19)

The eigenvalues of W are the splittings Eν − E0.

FIG. 3. A schematic diagram of an instanton trajectory composed of six kinks in the
ring-polymer formalism. The red circles represent the degenerate wells in a multi-
well system. If connected by a solid line, a feasible tunneling path exists between
the two wells, and the matrix element Aλμ is non-zero.

C. PIMD method
The multi-dimensional integral in the partition function can be

solved analytically through semiclassical approximation,65–67 i.e., the
method of steepest descent. The computational cost is normally low.
Errors of harmonic approximation, however, exist. It is natural to
think of using molecular dynamics sampling to avoid errors of this
harmonic approximation.

We start an introduction of the PIMD method from a density
matrix element formalism,68,69 following the derivation of Mátyus
et al.60 For a molecular Hamiltonian, the coordinate representation
of its density matrix has a clear definition. By inserting a complete
set of eigenfunctions ψn, it has the form

ρ(r, r′;β) = ⟨r∣e−βĤ
∣r′⟩ =∑

n
ψn(r)ψ∗n (r

′
)e−βEn. (20)

Consider a symmetric double-well system first, and mark the sym-
metry operation corresponding to rearrangement through tunneling
as P̂. The two lowest-level eigenfunctions are symmetric and anti-
symmetric, respectively, under P̂, i.e., ψ0(P̂r) = ψ0(r) and ψ1(P̂r)
= −ψ1(r). In the low temperature limit, the higher levels can be
neglected, and a ratio between the two density matrix elements is

lim
β→∞

ρ(r, P̂r;β)
ρ(r, r;β)

≈
∣ψ0(r)∣2e−βE0 − ∣ψ1(r)∣2e−βE1

∣ψ0(r)∣2e−βE0 + ∣ψ1(r)∣2e−βE1

= tanh(
Δ
2
[β − β(r)]), (21)

where

β(r) =
2
Δ

ln∣
ψ1(r)
ψ0(r)

∣. (22)

The β(r) was interpreted as an imaginary “tunneling time.” Δ = E1
− E0 is the tunneling splitting to be determined.

In the density matrix element defined above, r is an arbitrary
geometry as the molecular wavefunctions ψn spread in the coordi-
nate space. The splitting size Δ, however, is independent of r and
β. This means that one particular geometry is enough to determine
the splitting in Eq. (21). The reactant r = a is a convenient and prac-
tical choice as P̂a = b, where a and b are the reactant and product
geometry, respectively. They are stationary points in the two wells.
A concise relationship between density matrix elements and the
splitting size exists,

ρ(a, b;β)
ρ(a, a;β)

= tanh [
Δ
2
(β − β)]. (23)

For brevity, the ratio ρ(a, b; β)/ρ(a, a; β) is labeled as I(β). The
splitting size Δ can be calculated from I(β) with at least two differ-
ent β as β is also an unknown quantity. The extension to a multi-well
system is easy by making use of the permutation-inversion symme-
try group.61 Next, we shall concentrate on the calculation of I(β)
using PIMD.

In a standard discretized path-integral formalism, the element
ρ(a, b;β) is transformed into a multi-dimensional integral in a
classical linear polymer phase space,

ρ(a, b;β) ≃ A∫ dp1 . . . dpM ∫ dr1 . . . drMe−βM HM
a,b , (24)
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with the effective classical linear polymer Hamiltonian

HM
a,b =

f

∑
j=1
[

M

∑
i=1

p2
i, j

2μi, j
+

M−1

∑
i=1

1
2

m jω2
M(ri, j − ri+1, j)

2
]

+

f

∑
j=1

1
2

m jω2
M[(a j − r1, j)

2
+ (rM, j − bj)

2
]

+
M

∑
i=1

V(ri) + (V(a) + V(b))/2. (25)

M beads are inserted between fixed end points a and b, with the
coordinates r1, . . . , rM , each bead being a replica of the molecular
system with f dimensions. Different from the convention that N
is used to label the number of time slices in path-integral simula-
tions, we use M deliberately since in the instanton method M is
the number of time slices for the linear polymer. As will be shown
later, the equivalence between the steepest-descent approximation
of the path for ρ(a, b;β) in Eq. (24) and the linear polymer for
one kink process in the instanton method is crucial to demonstrate
that the instanton method is a steepest-descent approximation of
the PIMD method. The imaginary time β is cut into M + 1 parts,
βM = β/(M + 1) and ωM = 1/(βMh). The pi,js are introduced by the
M × f inverse Gauss integrals. μi,j can be arbitrarily chosen while
a judicious choice can improve efficiency of sampling here as pro-
posed in Ref. 62. Their contribution to the prefactor A will later be
offset by the same prefactor in ρ(a, a;β).

Then, I(β) can be written as

ρ(a, b;β)
ρ(a, a;β)

≃
∫ dp1 . . . dpM ∫ dr1 . . . drMe−βM HM

a,b

∫ dp1 . . . dpM ∫ dr1 . . . drMe−βM HM
a,a

, (26)

which tends to be exact when M →∞. Performing molecular
dynamics sampling directly on this formula is not practical because
a and b are far apart. It is natural then to think of dividing the space
between a and b into sufficiently small segments. This strategy is
equivalent to thermodynamic integration. A free energy function is
defined as

F(λ,βM) = −
1
βM

ln ρ(a, c(λ);β). (27)

λ here denotes a reaction coordinate, ranging [0, 1], and geometry
c(λ) connects c(0) = a and c(1) = b along a smooth path. Cus-
tomarily, we take the instanton as the smooth path as it provides
sensible orientations of the degenerate conformations by finding a
minimum-action pathway. Then, one has

ρ(a, b;β)
ρ(a, a;β)

= exp [−βM(F(1,β) − F(0,β))]

= exp [−βMΔF]. (28)

The free energy difference can be calculated by dragging the end
point c(λ) from a to b,

ΔF = ∫
1

0
dλ

∂F(λ,β)
∂λ

= ∫

1

0
dλ⟨

∂HN
a,c(λ)

∂λ
⟩

λ
, (29)

where ⟨⋅ ⋅ ⋅⟩λ represents a thermodynamic ensemble average of the
linear polymer with an end point fixed at c(λ). The Hamiltonian
HM

a,c(λ) is obtained by replacing b in Eq. (25) by c(λ).
It is shown that c(λ) is the only variable in the Hamiltonian that

explicitly includes λ; therefore,

∂HM
a,c(λ)

∂λ
=

f

∑
j=1
[

1
2
∂V(c)
∂cj

+m jω2
M(c j − rM, j)]

∂cj

∂λ
. (30)

The first term integrates to be zero since V(a) = V(b). Then, one
has

ΔF = ω2
M∫

1

0
dλ[

∂c̄
∂λ
]

T
[c − ⟨rM⟩λ], (31)

where c̄ j = m jc j is used to shorten the notation. This is the final
expression. c(λ) depends on the specific path chosen from a to b.
The integral of λ from 0 to 1 can be implemented by numerical meth-
ods, such as Gauss–Legendre quadrature. The expectation values of
rM at several λs are needed to evaluate ΔF in Eq. (31), as determined
by

⟨rM, j⟩λ =
∫ dp1 . . . dpM ∫ dr1 . . . drM rM, je−βM HM

a,c(λ)

∫ dp1 . . . dpM ∫ dr1 . . . drM e−βM HM
a,c(λ)

. (32)

III. CONNECTION BETWEEN INSTANTON
AND PIMD METHOD

In the case of tunneling splitting calculations, the relationship
between instanton theory and the PIMD method may be unclear
because the former is derived from the partition function in Eq. (1)
while the latter starts from the density matrix element in Eq. (21).
In this section, through a simple derivation, it is shown that the
instanton method is also a semiclassical approximation of the PIMD
method in the calculation of tunneling splitting.

If a semiclassical approximation is made to the density matrix
element ρ(a, b;β), we can get a stationary point in the Mf -
dimensional linear polymer space corresponding to a fixed-end
linear polymer connecting a and b over the barrier that minimizes
the Euclidean action. It will be exactly the same as the kink tra-
jectory. This equivalence is crucial in establishing the connection
between the instanton and PIMD methods. After integrating out the
momentum p1, . . . , pM , one has

ρ(a, b;β) ≃ (
1

2πβM h̵2 )

f (M+1)/2
⎛

⎝

f

∏
j=1

m j
⎞

⎠

(M+1)/2

× ∫ dr1 . . . drMe−βM UM
a,b. (33)

Here, a large M is assumed. The prefactor would be offset by the
same term in ρ(a, a;β). UM

a,b can be obtained by excluding the kinetic
energy terms in Eq. (25). It is numerically equivalent to the potential
energy in the instanton method in Eq. (6) with the only difference
that fixed ends are used here. The Hessian matrix determined by
UM

a,b, therefore, equals that of the instanton method.
Diagonalizing the mass-weighted Hessian matrix, one gets a

zero-frequency mode, which describes a wave-like motion of beads
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where one bead moves forward and the adjacent bead takes its place.
Beads on the barrier constitute a wave packet, which moves freely
along the kink as there are many beads collapsed in a and b as shown
in Fig. 2. In the instanton method, such permutation motion takes
N steps to complete a cycle (N is the number of time slices of the
trajectory). In the density-matrix based PIMD simulation, however,
the ends of the linear polymer are fixed at a and b. If we assume that
there are l beads on the barrier under the requirement that the action
of the linear polymer is unchanged, only M − l steps of such permu-
tation are allowed. Therefore, integration over this zero-frequency
mode contributes a factor of (M − l)

√
βM h̵Skink. This is the only dif-

ference with the instanton method, while other terms such as action
Skink and fluctuation Φ are all the same. Finally, we label the semi-
classical approximation of the ratio of the density matrix elements
I(β) as ISC,

ISC =

(M − l)
√
βM h̵Skink∏

′

k

√
2π
βMη2

k

∏k

√
2π

βMω2
k

e−Skink/
̵h

= (M − l)
βM h̵
Φ

√
Skink

2πh̵
e−Skink/

̵h, (34)

where η2
ks are the eigenvalues of the mass-weighed Hessian matrix

J of the linear polymer that stands for ρ(a, b;β). ω2
ks are those of J0

from ρ(a, a;β). The prime indicates that the zero-frequency mode is
omitted from the product.

As beads are distributed at equal imaginary time intervals βM ,
we further define the imaginary time experienced by these l beads on
the barrier as the imaginary tunneling time, βinst = lβM . Then,

ISC = (β − βinst)
h̵
Φ

√
Skink

2πh̵
e−Skink/

̵h. (35)

Making use of Eq. (23) and that tanh(x) ≃ x when x is small (one
can arrive at the same conclusion without making the tanh(x) ≃ x
approximation), we have

ΔSC ≃
2h̵
Φ

√
Skink

2πh̵
e−Skink/

̵h. (36)

Comparing with the Δinst in Eq. (14), we can get

ΔSC = Δinst. (37)

This means that by applying the semiclassical approximation to the
density matrix element, we will get the same result as in the instanton
method. From this, the point that the instanton method for tunnel-
ing splitting is a semiclassical approximation of the PIMD method
is clear. In addition, we get a by-product βinst. If using the half-
height width of the barrier to make a rough measure of βinst as in
Fig. 2, we get values consistent with the PIMD method in the order
of magnitude.

IV. TUNNELING SPLITTINGS IN WATER CLUSTERS
In the rovibrational spectra of gas-phase water clusters from

microwave and far-infrared experiments, splittings of the rovibra-
tional levels were detected, which revealed profoundly the wave

nature and quantum dynamics of nuclei in water. These splittings,
coming from the couplings between degenerate wells as introduced
in Sec. I, revealed a more complex molecular symmetry36 than an
ordinary system with a rigid structure. In the literature, the study of
tunneling splitting was accompanied by but more challenging than
the resolution of the structure of water clusters.25,70–72 From a struc-
ture in the ball-and-stick form, a complete permutation-inversion
group36,73 could be constructed, which traverses all potential tun-
neling rearrangements. The tunneling motions that are important
to the splittings can be mainly categorized as flipping (torsional
tunneling), geared (anti-geared) interchange, and bifurcation tun-
neling.74 “Interchange” refers to when two water molecules in an
H-bond change their roles as the donor and acceptor. Early calcu-
lations use ab initio electronic structures to estimate the barriers
of different tunneling pathways, which were competent to identify
the possible tunneling rearrangements responsible for the observed
splitting. The estimations of splitting sizes were based on the WKB
approximation or low-dimensional models.50,75,76 Consistent with
intuition, breaking fewer H-bonds leads to a lower barrier and hence
a larger splitting size. Flipping tunnelings do not break H-bonds
and tend to produce the largest splittings. Although numerically
rough, the splitting patterns could be explained successfully by
the permutation-inversion group generated from the most possible
rearrangements.

With the advancement in computing power, the instanton,
as one of the semiclassical methods, has achieved more precise
tunneling pathways and, hence, numerical results that are more con-
vincing.56 The complex tunneling dynamics and splitting patterns
in water clusters have been reviewed by Cvitaš and Richardson.74

The instanton not only represents the most appropriate path but
also gives results accurate in the order of magnitude. The sources
of errors are then gradually clarified. There is now an opportu-
nity to build on the instanton to enable more rigorous calculations
and decipher the finer structure of the vibration–rotation–tunneling
(VRT) spectra. As one of the most successful attempts, the torsional
tunneling splitting in water trimer was the first to be reproduced
rigorously with an unprecedentedly high accuracy using the PIMD
method.64 However, for other clusters, various problems still exist
and block the way of accurate calculation, such as the rotation– and
vibration–tunneling couplings. The current two theories, i.e., instan-
ton and PIMD, focus on calculation of the ground-state tunneling
splittings. Some attempts have been made to include these couplings
as will be introduced later. We review recent progress and discuss
the challenges by enumerating the water clusters from the dimer to
hexamer.

A. Rotation–tunneling coupling of the acceptor
tunneling splitting in a water dimer

A water dimer is the smallest and earliest studied water
cluster.28,77 It has one hydrogen bond with the two water molecules
as donor and acceptor. A full 12-dimensional wavefunction method
has been performed recently where the complete molecular Hamil-
tonian (including permutation-inversion symmetry) was solved by
a kind of discrete variable representation method, and the whole
VRT levels can be obtained.47 Using the ring-polymer instan-
ton, up to five different tunneling pathways have been found
between eight degenerate configurations.56 The corresponding five
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permutation symmetry operations can be generated from two basic
ones, i.e., the acceptor tunneling and geared tunneling. A com-
bination of these two operations can generate a doublet-of-triplet
splitting.

Among them, the acceptor tunneling contributes a large dou-
blet splitting as it involves no breaking of hydrogen bonds and thus
has a small barrier.56,73,77,78 This tunneling is special in the sense
that it is constituted by a tunneling path with barrier and a bar-
rierless rotation operation, as demonstrated in Fig. 4. The swap of
the two hydrogens of the acceptor [Fig. 4(a)] has to be coupled with
the overall rotation around the inertia spindle [Fig. 4(b)] in order
to finish the permutation [Fig. 4(c)]. A recent work has calculated
the acceptor tunneling splitting using the PIMD method with the
thermodynamics integration along an instanton path and obtained
a value in excellent agreement with the variation method (diffusion
Monte Carlo method).63

We noticed that a symmetry factor of 2 is applied to the PIMD
result in the previous work based on the reasoning that there are two
equivalent instantons in the system.62 Yet, according to our expe-
rience, such symmetry factor may be inappropriate for the PIMD
method since the ratio of density matrix elements does not depend
on the path of TI. Hence, the splitting size could be erroneously
magnified twice, depending on the ergodicity of the sampling in the
PIMD simulations. Due to the neglect of the rotation–tunneling cou-
pling in the current PIMD method, we suspect that the PIMD result
might not agree spot on with the benchmark for the water dimer. An
attempt has been made to evaluate this coupling.58 They proposed an
extension to instanton theory, inspired by the derivation of Mátyus

FIG. 4. The instanton pathway (a) of the acceptor tunneling has to couple with an
overall rotation (b) to constitute a pure (AB) permutation operation (c). If taking
twice the instanton operation without the rotation, the dimer will not return to the
original orientation. ABCD label the four distinct hydrogen atoms. (d) is a schematic
of the energy barrier experienced by the (AB) permutation.

and Althorpe in a complete SO(3) symmetry,61 and qualitatively
evaluated the acceptor splitting of the first several rotational-excited
levels in the water dimer. More theoretical efforts on deciphering
this finer structure are desired.

B. Accurate calculation of the torsional tunneling
splitting in a water trimer and the nonadjacent
interactions

Quantitative reproduction of experimental trimer splittings has
long been viewed as an important criterion for testing the quality of
the 3-body interactions of a water potential.79–81 To achieve this, a
rigorous full-dimensional treatment is required, and on top of this,
the accuracy depends on the quality of the water potential. The tor-
sional tunneling splitting in a water trimer is probably the first one
in all clusters that have been calculated rigorously from first princi-
ples with spectroscopic accuracy.64 It marks significant progress of
the water potential and demonstrates the high predictive power of
the PIMD + TI method.

A water trimer has a ring structure with three hydrogen bonds
in the oxygen plane and three unbonded hydrogens up or down
the oxygen plane.29,82 Flipping of one of the unbonded hydrogens
to the other side of the plane leads to an equivalent conformation
while experiencing a very low barrier. Flipping the three unbonded
hydrogens one by one results in six permutationally equivalent con-
formations [Fig. 5(a)]. The flip (or torsional) tunneling operation
generates a C6 permutation-inversion symmetry group, which then
gives a quartet splitting with a 1, 2, 2, 1 degeneracy. Due to the
low barrier, the splitting size is large (up to tens of wavenum-
bers). The rotational excitations are several orders of magnitude
smaller than the torsional splitting and display as a fine structure in
the spectrum. Fortunately, little rotational–tunneling coupling and
vibrational–tunneling coupling have been observed, therefore, the

FIG. 5. The torsional tunneling splitting in a water trimer. (a) shows the six degen-
erate conformations. hi (i = 1, 2, 3) indicate adjacent and nonadjacent interactions
between the six wells. (b) and (c) show that the calculated splitting sizes are in
good agreement with the experiments. The lowest level of the quartet is set as the
zero point. This figure is reprinted from Ref. 64 with permission. Copyright 2000
American Chemical Society.
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ground-state splitting could then be inferred from the transitions
observed in the VRT spectra. Extensive and detailed experimen-
tal measurements gave complete level information and a precise
splitting size.29,33,82–84

From the theoretical perspective, however, with nine more
dimensions than dimer, the water trimer is very challenging to be
treated with a full 21-dimensional wavefunction method.85 Semi-
classical methods on the other hand are not quantitative enough for
the task. The PIMD method here plays an important role to enable a
full-dimensional and rigorous calculation.

Our recent theoretical work accomplished a reproduction of
the experimental values with an unprecedented accuracy of just
one wavenumber from first principles64 [Figs. 5(b) and 5(c)]. The
Hückel approximation (considering only adjacent interactions) was
shown to be no longer valid, which means that sticking to the
tunneling matrix in Sec. II B of the present Perspective would
encounter inaccuracy in a quantitative calculation. To achieve high
accuracy, the nonadjacent terms that represent a delocalization of
the Wannier-style nuclear wave packets were included in the tor-
sional Hamiltonian as performed in Ref. 64. These nonadjacent
interactions contribute the shift of the split levels from an even 1:2:1
spacing. Such effect may also exist in other multi-well systems with
low barriers, e.g., cyclic water pentamer.

C. The tunneling splitting of vibrational-excited
states in a water tetramer

The water tetramer is an ideal platform to test the four-body
term in a many-body water potential. It has a ring structure like the
water trimer and four unbonded hydrogens up or down the oxygen
plane alternatively34 (Fig. 6). To construct an equivalent conforma-
tion, the four unbonded hydrogens must flip together to opposite
sides of the plane. The tunneling motion is between only two sym-
metric wells, which is consistent with the doublet splitting observed
in the VRT spectra.34,86 Apart from this, no other type of tunneling
splitting has been observed. This doublet splitting is much smaller in
size than the torsional one in the water trimer (2.26 GHz for (H2O)4
and 5.6 MHz for (D2O)4)34,86 due to the fact that although no hydro-
gen bonds are broken, all the four unbonded hydrogen atoms are
involved in the tunneling. The tunneling mechanism is still undeter-
mined due to complexity in the multi-proton transfer process.49,86

There are questions on whether the four hydrogen atoms go through
a concerted tunneling pathway or a step-wise one and whether the
intermediate state contributes or not. Fortunately, the PIMD + TI
method should not be affected by uncertainties in the path since the
result of TI is path-independent, and an ongoing work of our group
is aimed to answer this question.

Another problem of water tetramer is the possible
vibration–tunneling couplings. Because the splittings were observed
in low-energy vibrational bands, there has been a possibility that
the observed doublets are the sum or difference of splittings of the
ground state and a vibrational-excited state86 as shown in Fig. 6.
The vibration–tunneling couplings were considered to be weak
because the vibration was supposed as a ring-deformation motion
of the bonded hydrogens, which would have little influence on
the flip motion.86 To achieve the goal of taking spectra data as
the calibrator, methods that can accurately calculate the tunneling
splittings of vibrational-excited states are desired. Early theoretical

FIG. 6. Schematic of the tunneling splitting in a water tetramer. The observed dou-
blet (the blue arrows) in spectra may be a sum of the splitting of the ground state
and a vibrational-excited state.

attempts were made in model systems.87 For molecular systems, an
effort has been made recently to build a semiclassical method based
on the instanton from a Hamilton–Jacobi formalism.59 Besides this,
deciding whether the doublets are ground-state splittings or the
sum still requires more evidence.

D. Larger water clusters
The cyclic water pentamer was supposed to have a similar tor-

sional tunneling motion like the water trimer.88,89 Flipping the five
unbonded hydrogens in sequence could result in ten equivalent
conformations that split the rovibrational state into six levels with
1, 2, 2, 2, 2, 1 degeneracy. In addition, the splitting size was con-
sidered to be large up to tens of wavenumber as the water trimer
because of the low barrier of torsional motion. Several bands in the
VRT spectra have been identified as transitions between six levels,90

but the complete information of all the splitting levels is still lacking
to our knowledge. Theoretically, Cvitaš and Richardson computed
the ground-state splittings using instanton theory91 with a tunnel-
ing matrix of 320 equivalent minima, including the torsional and
bifurcation tunneling motions.88 This effort might be helpful in the
continuing effort to assign the experimental spectrum. However, the
nonadjacent interactions should be presented in the torsional tun-
neling splitting of the water pentamer as well,64 which were not
included in the tunneling matrix of the instanton method and will
impact the ratio of the spacings between the torsional splitting lev-
els. Therefore, a prediction from a high-quality calculation using
the PIMD + TI method is desirable, yet such calculation would
require an ab initio water potential with highly accurate four-body
interactions (and perhaps accurate 5-body interactions may also be
required).

The water hexamer has several possible structures that were
considered to have similar energy. During the identification of the
structures, ticks of tunneling splitting have been found in the pure
rotational spectra,35,71 showing a unique doublet-of-triplet splitting
pattern. In the prism structure, the interchange tunneling path-
ways have been identified to be responsible for the splittings; the
anti-geared mechanism breaks one H-bond, while the geared mech-
anism concertedly breaks two. Using ring-polymer instanton theory,
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Richardson et al. discovered that the geared mechanism plays a
crucial role in producing the unique splitting pattern. The absolute
size of the splittings predicted by instanton theory is larger than
the experimental result due to the semi-quantitative nature of the
method and the accuracy of the water potentials available at the
time.35 Vaillant et al. made a first PIMD calculation and obtained
splitting sizes closer to the experimental results with the same water
potential.63 However, the sampling uncertainties remain large, and
from our experience, fully converging the PIMD + TI for the hex-
amer is very challenging due to the relatively high barrier and the
complexity of the tunneling pathway. Improving the sampling effi-
ciency is a prior task for accurate calculations of the tunneling
splittings in large-size water clusters. On the other hand, the experi-
ment in Ref. 35 observed that the transitions between different pairs
of rotational levels exhibit different splitting sizes. This indicates
that rotation–tunneling coupling is non-negligible in the hexamer,
and thus, the exact ground-state splitting size has not been precisely
derived. The rotation–tunneling coupling may be the next key point
to be considered in future theoretical calculations.

V. DISCUSSION AND SUMMARY
Before concluding, we discuss a key issue, which is the impact

of the water potential energy surface on the tunneling splittings. Pre-
vious studies have shown that the use of different water potential
energy surfaces yields quantitatively different results. Specifically,
in the case of the water trimer, a comparison was made between
the MB-pol and “Our-pol” water potential energy surfaces.64 PIMD
simulations using the former yielded I1(β = 8000) = 0.58(2) and
h1 = 26(2) cm−1 while using the latter produced I1(β = 8000)
= 0.520(3) and h1 = 22.1(2) cm−1. The tunneling splitting value
from “Our-pol” was much closer to the benchmark obtained from
spectra data, which was 21.7 cm−1. In a study of the water hexamer
prism, Richardson et al. compared the tunneling splittings obtained
using the HBB2-pol92 and MB-pol water potential energy surfaces.35

They found that the results obtained using the two water potentials
could differ by 15%–30%. This disparity implies that the accuracy
of the potential energy surfaces can be effectively evaluated by cal-
culating tunneling splittings, provided that a rigorous treatment of
the nucleus is achieved. Tunneling splittings can be used as the
most stringent benchmarks to evaluate the accuracy of the potential
energy surfaces.

In this Perspective, we reviewed the instanton and the PIMD
methods on calculating ground-state tunneling splittings in water
clusters. A clear connection is established between the two methods
through a simple derivation. Instanton theory provides a computa-
tionally efficient way to predict tunneling splitting for larger systems,
yet the splitting size it predicts is semi-quantitative due to the
steepest-descent approximation made. The PIMD method improves
the accuracy of calculation results by correcting this error, especially
for systems with low barriers and strongly anharmonic modes.

The ability of the PIMD method to calculate rigorously and
accurately the ground-state tunneling splitting has been illustrated
in a water trimer. However, for other water clusters, before one can
compare with the spectra data, more efforts are required. Each rovi-
brational level of an isolated molecular system should be split by
the tunneling motions with the splitting size reflecting the ease of

tunneling. The transitions observed in spectra are between
rotational- or vibrational-excited levels. If the system exhibits a
strong rotation– or vibration–tunneling coupling, it would be hard
to figure out the splitting size of the ground state experimentally.
We listed the current issues including the vibration–tunneling cou-
pling in a water tetramer and rotation–tunneling coupling in a
water dimer and hexamer prism. Some recent progress was sum-
marized. The target of taking the spectra data of these clusters as
calibrators of an ab initio water potential is challenging, and more
theoretical efforts on solving rigorously the tunneling splittings
of rovibrational-excited states are required. Besides, for large-size
clusters and complex tunneling motions, there is still room for
improving the sampling efficiency to enhance reliability and reduce
computational cost. With the support of the two path-integral based
methods and further developments in the methodology, we believe
that accurate calculation of tunneling splittings in water clusters is
possible, and we hope this also will facilitate constructions of water
potentials with spectroscopic accuracy in the near future.
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