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H3S is believed to the most possible high-temperature superconducting (Tc) phase of hydrogen
sulfide at ∼200 GPa. It’s isotope substitution of hydrogen (H) by deuterium (D), however, shows
an anomalous Tc decrease of ∼100 K at 140 to 160 GPa, much larger than the Bardeen-Cooper-
Schrieffer theory prediction. Using ab initio path-integral molecular dynamics (PIMD), we show
that the nuclear quantum effects (NQEs) influence the structures of H3S and D3S differently at finite
temperatures and the interval when H3S possesses the symmetric high Tc structure while D3S does
not is in agreement with, though their absolute values are lower than experiments. This is consistent
with an earlier theoretical study using the stochastic self-consistent harmonic approximation method
in descriptions of the nuclei at 0 K. The remaining discrepancy can be substantially improved when
the electronic structures are calculated using a hybrid function. Our study presents a simple picture
to interpret the isotope dependent of Tc and emphasizes the quantum nature in the high-pressure
hydrogen sulfide system.

I. INTRODUCTION

A superconductor is a material which exhibits zero
electric resistance under a transition temperature (T ),
i.e. Tc. Ever since its discovery in mercury in 1911 [1],
understanding the mechanism of this behavior and seek-
ing for high-Tc superconductor have ranked among the
biggest challenges in physics. Stimulated by the isotope-
dependence of Tc observed in a wide range of supercon-
ductors, Bardeen, Cooper, and Schrieffer (BCS) proposed
the microscopic picture of electron-phonon coupling in
their seminal work in the 1950s [2, 3], which explains the
mechanism of most superconductors discovered by then.
In 1986, a record-high 133 K Tc was found in copper ox-
ide at ambient pressure [4], followed by a 164 K Tc in a
similar system under pressure [5], and the discovery of
a series of alike superconductors [6–8]. At present, the
superconducting nature for most of these later found su-
perconductors remains unclear. Consequently, it is cus-
tomary to call the superconductors whose superconduct-
ing behaviors can be explained by BCS theory as the
conventional ones.

Since BCS theory gives a clear guide to design high
Tc conventional superconductors, (i.e. a high density
of states close to the Fermi level, a favorable combina-
tion of high-frequency phonons, and a strong electron-
phonon coupling), metallic hydrogen and hydrogen-rich
compounds were naturally chosen as the target [9, 10].
Accordingly, a series of theoretical studies on hydrogen
and hydrides had been carried out (SiH4[10], SnH4[10],
GeH3[11], GeH4[12], KH6[13], CaH6[14], etc). The crys-
tal structure searching methods had played a crucial
role [14–16]. For example, a high Tc value of 98 to 107 K

was predicted in SiH4(H2)2 at 250 GPa (using a Coulomb
parameter µ∗ = 0.1− 0.13, hereinafter, see references for
the details) [17]. In GeH4(H2)2, a Tc value of 76 to 90 K
was predicted at 250 GPa [18]. In MH3 (M= Ga, Ge, Si)
hydrides, Tc values scattering from 76 K to 153 K were
reported [11, 19, 20]. In CaH6, a record-high Tc of 220 to
235 K was reported at 150 GPa [14]. In spite of these ex-
citing theoretical results, it is fair to say that the system
which has attracted most attention resides on the recent
discovered hydrogen sulfides [21–27], especially after its
experimental observation of a 203 K Tc based on direct
transport measurement [28].

Now, a consensus has been reached that the stable
compound of hydrogen and sulfur at ambient pressure,
i.e. H2S, becomes unstable at high pressures. The su-
perconducting behavior at 200 GPa is very likely due to
its decomposition to H3S [22, 23, 25–27]. Comparisons of
the ab initio static enthalpy based on density-functional
theory (DFT) calculations (using the PBE functional)
have shown that the stoichiometry decomposition of H2S
to H3S and S happens at 43 GPa, and H3S remains stable
at least up to 300 GPa [23]. Within this stability range
of H3S, an orthorhombic Cccm structure dominates the
group state between 43 and 112 GPa. Then, the rhombo-
hedral R3m phase takes over and it remains most stable
till 175 GPa. After 175 GPa, the cubic Im3̄m structure
becomes the most stable phase. Calculations of the Tc
based on BCS theory using this Im3̄m structure of H3S
(D3S), in the mean time, show that this value can be
as high as ∼200 K (∼160 K). In experiments, the Tc of
H3S (D3S) was measured to be ∼190 K (∼150 K) at 170
GPa [28]. This agreement provides an excellent rational-
ization of the high Tc phase with the Im3̄m structure.
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We note, however, that an isotope-dependence for the
transition pressure to high Tc exists in experiment, i.e.
H3S enters into the high Tc region by ∼20 GPa earlier
than D3S [28]. Considering the fact that these theoreti-
cal studies are mostly based on static geometry optimiza-
tions, the isotope-dependence of the experimental obser-
vation, especially the intrinsic anharmonic effects and the
nuclear quantum effects (NQEs), are rarely discussed.

Recently, using the stochastic self-consistent harmonic
approximation (SSCHA) method for the treatment of
nuclear motion [29, 30], Errea et al. showed that the
phonon spectra of H3S are highly anharmonic and the
anharmonic correction to the phonon spectra has a non-
negligible influence on the values of Tc [24]. When taking
into account of their contribution to the free-energy as
the hydrogen (H) moves along hydrogen-bond, they fur-
ther demonstrated that the hydrogen-bond symmetriza-
tion in superconducting H3S has a strong quantum na-
ture [31]. Upon replacing H by its isotope deuterium (D),
which has only one extra neutron and therefore possesses
less NQEs, the pressure with which the system trans-
forms to the symmetric Im3̄m structure increases by 12
GPa at 0 K. Considering the fact that Tc of the ansym-
metric rhombohedral R3m phase has a much lower Tc
than the cubic Im3̄m phase, this quantum symmetriza-
tion of the hydrogen position along the S-H· · · S axis
presents a clear picture for the isotope-dependence of the
transition pressure with which Tc suddenly increases in
H3S and D3S. Their absolute values are still lower than
the experimental observation by ∼50 GPa. We note that
this idea of quantum symmetrization was originally pro-
posed in studies of high-pressure H2O [32, 33], and ab
initio path-integral molecular dynamics (PIMD) simu-
lations have played an important role in their rational-
ization [34]. Confirmation of this picture and providing
more physical insight to this phase transition by going to
finite T s, using methods like ab initio PIMD, are neces-
sary. In addition to this, the PBE functional was used in
descriptions of the electronic structure in Ref. 31[35]. It
is well-known that these generalized gradient approxima-
tions (GGAs) to the exchange-correlation (XC) potential
often underestimate the proton transfer energy barrier in
hydrogen-bonded systems [36]. A systematic study of the
other exchange-correlation functional’s influence on this
symmetrization pressure is highly desired.

Based on this consideration, we report in this
manuscript a theoretical study on the H3S symmetriza-
tion, using ab initio PIMD for the description of the
NQEs at finite T s. The accuracy of standard GGA func-
tional was analyzed by comparing the potential energy
surface (PES) of the hydrogen along the S-H· · · S axis
with a hybrid functional. At 90 and 160 K, our simu-
lations show that NQEs influence the structures of H3S
and D3S differently and the interval when H3S possesses
the symmetric high Tc structure while D3S does not is in
agreement with, though their absolute values are lower

than experiments. This is consistent with a earlier the-
oretical study in Ref. 31 where the SSCHA method was
used at 0 K. The remaining discrepancy with experiments
can be substantially decreased when the electronic struc-
tures are described beyond PBE. Our study presents a
simple picture to interpret the isotope-dependent of Tc,
rationalizes the remaining discrepancy with experimental
using higher-level structures, and emphasizes the quan-
tum nature of the high-pressure hydrogen sulfide system.

The paper is organized as follows. The computation
details are given in Sec. II. In Sec. III, we presents
our results on the quantum nature of the S-H· · · S axis
symmetrization, as well as an analysis of the influence of
functionals. We draw our conclusions in Sec IV.

II. COMPUTATIONAL DETAILS

Our simulations were preformed using the Vienna ab
initio Simulation Package (VASP) code [37, 38], along
with our own implementation of the PIMD method [39–
44]. DFT was used to describe the electronic structure
“on-the-fly” as the path of the nuclei propagates. Pro-
jector augmented wave (PAW) potentials along with a
700 eV energy cutoff were employed for the expansion
of the electronic wave functions [45, 46]. The Perdew-
Burke-Ernzerhof (PBE) functional was used to describe
the electronic exchange-correlation interaction [35]. With
a supercell containing 96 atoms and a Monkhorst-Pack
k-point mesh of spacing 2π×0.04Å−1 to sample the Bril-
louin zone, we performed ab initio PIMD simulations at
90 and 160 K. The Andersen thermostat was chosen to
control the temperature of the NV T ensemble [47], in
which the atomic velocities were periodically randomized
with respect to the Maxwellian distribution every 60 fs.

For the reported results, 16 beads were used. All statis-
tics of the bond length were obtained using the centroid
of the path, and we note that using the bond lengths in
the individual beads gives the same results. The PBE
exchange-correlation functional used in the PIMD simu-
lations suffers from self-interaction errors, which may in-
duce a substantial underestimation of the transition-state
energy [36]. We investigate this effect by focusing on the
transition barrier and transition distance of the hydrogen
atoms as they move along the S-H· · · S axis between their
equivalent positions, and comparing the values obtained
using the PBE and the hybrid HSE06 functional [48, 49].
In determining these energy barriers, the climbing im-
age nudged elastic band (cNEB) method was used [50],
in which all force components that perpendicular to the
tangent of the reaction path were reduced to less than
0.01 eV/Å.
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III. RESULTS AND DISCUSSIONS

IIIa. Quantum Nature of the Phase-Transition

We start by looking at the structures of the rhombohe-
dral R3m phase and the cubic Im3̄m phase at the static
level. Although being rhombohedral, R3m is very close
to cubic symmetry. This can be evidenced by looking
at the rhombohedral angle of R3m, which is 109.5142,
109.5476, and 109.5592, respectively at 140 GPa, 150
GPa, and 160 GPa, in comparison with the value of
109.47◦ for a perfect bcc lattice. Therefore, we visualize
the difference between the structures of these two phases
in Fig. 1 a) and b), using a slightly distorted bcc cell
of the R3m phase and the conventional bcc cell of the
cubic Im3̄m phase. The S atoms stay on a slightly dis-
torted bcc lattice in the R3m phase and the conventional
bcc lattice in the Im3̄m phase. The difference between
these two lattices is visually indistinguishable. The H
atoms, however, show very different behaviors. In the
R3m phase, the H atoms stay asymmetrically along the
S-H· · · S axis, being closer to one S atom. If we label the
covalent bond length S-H as d1 and the distance between
the H atom and its next nearest S atom as d2, these
two distances are unequal. In the Im3̄m phase, however,
they are symmetric, with d1 = d2. Therefore, the main
change happened during the phase transition from the
R3m phase to the Im3̄m phase, lies on the symmetriza-
tion of S-H· · · S, instead of the rhombohedral to cubic
lattice evolution. This can be clearly seen in Fig. 1 c)
and d), where we show that using a rhombohedral lat-
tice for the symmetric structure (R3̄m) or a cubic lattice
for R3m (fixR3m) has negligible effect on enthalpy differ-
ences of these two phases, and by imposing rhombohedral
or cubic lattice for R3m, the symmetrization happens at
very close pressures. In Ref. 31, a cubic cell has been
used in discussion of the phase transition in. Here, we
adopt a rhombohedral cell in discussions of the classical
and quantum nuclear effects at finite T s. By comparing
with their results, one will see that the quantum feature
of hydrogen-bond symmetrization is robust with respect
to this choice of the simulation cell.

Now we include the nuclear statistical effects at the
classical level. This is done by carrying out the ab ini-
tio molecular dynamics (MD) simulations at 90 K for
a supercell of the R3m phase. We define a H trans-
fer coordinate δ = d1 − d2. When it is zero, the hy-
drogen bond is symmetric and the H atom is equally
shared by the two S atoms. When it is large in magni-
tude on both positive and negative sides, the H belongs
to one S atom. The results are shown in Fig. 2 a) and
b). It is clear that although the hydrogen bond sym-
metrization happens at ∼170 GPa at the static level,
this transition pressure is substantially decreased at a
finite T upon including the nuclear classical statistical

FIG. 1. Static crystal structures of the R3m (panel a) and
Im3̄m (panel b) phases. A slightly distorted bcc lattice is
used for the R3m phase and the conventional bcc lattice is
used for Im3̄m. d1 and d2 are the distance between the H
atom and its two nearest neighboring S atoms. In R3m, these
two values are not equal. In Im3̄m, they are. In c), we com-
pare the enthalpy differences of the R3m and Im3̄m phases
by imposing a cubic lattice for R3m (fixR3m) or a rhombo-
hedral lattice for the symmetric structure (R3̄m). In d), we
monitor the evolution of d1 and d2 using the cubic and the
rhombohedral cells. These two panels show that imposing
the rhombohedral symmetry has a negligible influence on the
symmetrization of the hydrogen bonds. Summing up these
four panels, we would say that the main structural change
upon transforming from R3m to Im3̄m lies on symmetriza-
tion of the hydrogen bonds.

effects. At 140 GPa, the probability distribution (P (δ))
has two clear peaks at δ equals ±0.2 Å, indicating that
the hydrogen bonds are still asymmetric. At 150 GPa, it
has a single peak at δ = 0, a clear indication of hydro-
gen bond symmetrization. Therefore, the symmetriza-
tion of the hydrogen bond happens in between 140 and
150 GPa, when the nuclear classical statistical effects are
included at 90 K. This symmetrization is also confirmed
by the corresponding free-energy profile calculated using
∆F (δ) = −kBT lnP (δ), where the single- and double-
valley feature of the profiles tells us where the H atoms
want to stay. In comparison with the static results, with
classical nuclei, the symmetrization moves toward a lower
pressure at a finite T .

Then we include the NQEs for D at the same T . The
structure is analyzed in a similar way, using the centroid
of the path-integral in Fig. 2 c) and d). At 90 GPa, P (δ)
(∆F (δ)) shows a double-peak (double-well) structure, in-
dicating that the hydrogen bonds are still not symmet-
ric. At 100 GPa, however, the single-peak (single-well)
structure already appeared, meaning that the hydrogen
bond symmetrization happened. Therefore, the transi-
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FIG. 2. Symmetrization of the hydrogen bonds. Using the
H transfer coordinate (defined as δ = d1−d2), the probability
distribution P (δ) and the free-energy profile ∆F (δ) are plot-
ted to the left and right scales based on ab initio MD and
ab initio PIMD simulations at 90 K. Panels a) and b) corre-
spond to results using classical nuclei, where the upper bound
for the asymmetric structure and lower bond for the symmet-
ric structure are reported within numerical resolution of 10
GPa. Panels c) and d) correspond to results obtained using
quantum nuclei for D3S. And panels e) and f) correspond to
results obtained using quantum nuclei for H3S.

tion from asymmetrized to symmetrized hydrogen bond
happens between 90 and 100 GPa in D3S. In H3S, on the
other hand, this symmtrization happens between 80 and
90 GPa (Fig. 2 e) and f)).

We note that these values for H3S and D3S are lower
than the transition pressures of 103 and 115 GPa when
quantum nuclei are used at 0 K. To investigate in more
detail the T -dependence of this transition pressure, we
carried out a separate series of ab initio MD and ab ini-
tio PIMD simulations at 160 K. Using right- and left-
solid triangles, we label the upper and lower boundary
of asymmetric and symmetric structures in Fig. 3, along
with results discussed earlier for the 90 K simulations.
The results reported for classical nuclei and quantum nu-
clei (both D3S and H3S) at 0 K in Ref. 31 were also la-
belled using diamond, solid circle, and open circle respec-
tively. From these figure, it is clear that while being con-
sistent with the isotope-dependence of the symmetriza-
tion pressure as reported in Ref. 31, our simulations also
show that the symmetrization happens at lower pressures
upon increasing T . This is also in agreement with a se-
ries of earlier hydrogen bond symmetrization study of
ice under pressure [32–34, 51]. Considering the fact that
symmetric Im3̄m phase exhibits a much higher Tc than
the asymmetric R3m phase when calculations based on

BCS theory is used [22], this presents a clear picture for
the isotope-dependence of the transition pressure of H3S
and D3S to the high Tc phase [28]. In comparison with
the results obtained using classical nuclei, the hydrogen
bonds in H3S are strongly quantum in nature.
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FIG. 3. T -dependence of the hydrogen bond symmetrization
using classical nuclei, and quantum nuclei for D3S and H3S.
The upper (lower) bounds of the asymmetric (symmetric) hy-
drogen bonds are labelled using left-(right-)oriented triangles
respectively. Two series of ab initio MD and ab initio PIMD
simulations are reported. The results from Ref. 31 for clas-
sical nuclei and quantum nuclei (D3S and H3S) at 0 K were
labelled using blue upward triangle, green half square, and
black half circle.

IIIb. Deficiency of PBE Functional

In spite of the qualitatively excellent agreement be-
tween the theoretical and experimental results, as re-
ported above and in Ref. 31, a large discrepancy still
exists. The predicted symmetrization happens at a pres-
sure ∼60 GPa lower than the experimental observation.
Considering the fact that the proton-transfer energy bar-
riers and the distance of proton transfer play an impor-
tant role for such a symmetrization [51], and the PBE
functional used here and in Ref. 31 is well-known to un-
derestimate the transition state (TS) energy in descrip-
tion of the chemical reactions [36], it is reasonable to
expect that the deficiency of the PBE functional plays a
key role on the underestimation of this transition pres-
sure. Based on this consideration, we investigate the
functional-dependence of the symmetrization pressure.

For periodic system, the easiest way to check this un-
derestimation of the TS energy, mostly due to the delo-
calization error [36], is to compare the results obtained
from the hybrid-functional calculations with those ob-
tained from the standard local-density approximation
(LAD) or generalized-gradient approximation (GGA)
calculations. However, considering the fact that the com-
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FIG. 4. TS searching based on the cNEB method for the
proton transfer process. The red squares are obtained using
HSE06. The black triangles are obtained using PBE. Upon
including partial exact exchange, the proton transfer barrier
and the proton transfer distance increase. This is a clear indi-
cation that self-interaction substantially underestimates these
quantities, and consequently underestimates the symmetriza-
tion pressure.

putational cost of performing a hybrid-functional based
PIMD simulation is beyond what we can afford, we car-
ried out such an analysis at the static level. The cNEB
method is used to find the TS for the H atom transfer
from one S atom to the other. The energy-profiles are
shown in Fig. 4 for the simulation at 100 GPa. From
this figure, it is clear that the PBE functional has un-
derestimated the proton transfer energy barrier by 50%
in comparison with the HSE06 based results. Consid-
ering the fact that partial exact-exchanges are included
in this hybrid-functional, which helps to cure the ar-
tificial electron charge delocalization induced by self-
interaction [36], this is a clear indication that PBE has
underestimated the proton transfer energy barrier. Con-
sequently, when the ab initio PIMD simulations are per-
formed using electronic structures provided by the DFT
calculations using PBE functional, a systematic underes-
timation of the symmetrization pressure occurs. We note
that a similar underestimation of the transition pressure
also happens in the molecular liquid dissociation to the
atomic liquid phase in high-pressure hydrogen, as pointed
out in Ref. 40. Upon including more exact-exchange in-
teraction in this HSE-based functional, this underestima-
tion is even more serious. Therefore, we believe that the
right answer for proton transfer energy barrier must lie
somewhere much higher than the PBE result. A quanti-
tative determination of this value requires more sophisti-
cated electronic structure methods, which is beyond the
scope of the present paper.

Finally, despite hybrid-functional based ab initio
PIMD simulations are beyond the computational cost we
can afford, due to the fact that extend of proton delocal-
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FIG. 5. Estimation of the symmetrization pressure, using
∆S = d×∆E, as the descriptor. The upper horizontal line at
∆S ∼ 5 indicates the situation when H3S symmetrization is
confirmed. The upper horizontal line at ∆S ∼ 2 indicates the
situation when D3S symmetrization is confirmed. Based on
this extrapolation, we estimate that using the HSE function
will increase the symmetrization pressure of H3S (D3S) by 21
(25) GPa, toward the experimental results.

ization is sensitive to the area below the proton trans-
fer energy profile, an estimation of the symmetrization
pressure can be provided. An estimator ∆S is defined as
(d×∆E)/2 and plotted as a function of pressure in Fig. 5.
The definition of d is given in the inset of Fig. 4. At each
pressure, this ∆S is obtained by two steps. First, an
enthalpy-based geometry optimization is carried out us-
ing DFT calculations with PBE and HSE06 functionals.
The difference between the two symmetrized structures
with the H atom belonging to each S gives us d. Then,
∆E is calculated using the cNEB method, again based on
DFT calculations with PBE and HSE06 functionals. The
results are shown in Fig. 5. From Fig. 4, we know that
the difference between the values of d is small and the
difference between values of ∆E is large between DFT
calculations with the PBE and the HSE06 functionals.
Consequently, at each pressure, the value ∆S is much
larger in the HSE06-based DFT calculations compared
with the PBE-based DFT calculations. The horizontal
dashed line indicates the value of ∆S at which H3S sym-
metrizes and the horizontal solid line indicates the value
of ∆S at which D3S symmetrizes. Therefore, an estima-
tion of the symmetrization pressure in the HSE06 func-
tional based PIMD simulations would be 110 GPa for H3S
and 135 GPa for D3S at 90 K. Compared with the PBE
functional based PIMD simulations, these values clearly
move toward experimental observation. Again, we note
that a better agreement between theory and experiment
must require more accurate theoretical methods on the
electronic structure level, with NQEs also accurately ad-
dressed. This is beyond the scope of most theoretical
groups. We focus more on pointing out the deficiency of
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the PBE functional, so that further theoretical studies
could be aware of in such simulations.

CONCLUSIONS

Based on ab initio MD and ab initio PIMD simula-
tions, we systematically investigate the influence of nu-
clear statistical effects on the symmetrization of H3S and
D3S with classical and quantum nuclei at finite T s. The
accuracy of standard GGA functional was analyzed by
comparing the PES of the hydrogen along the S-H· · · S
axis with the hybrid ones. Our simulations show that
NQEs influence the structures of H3S and D3S differ-
ently and the interval when H3S possesses the symmetric
high Tc structure while D3S does not is in agreement
with, though their absolute values are lower than the ex-
perimental observations. These results at 90 and 160 K
are consistent with a earlier theoretical study in Ref. 31
where the SSCHA method was used at 0 K. The re-
maining discrepancy with experiments can be substan-
tially decreased when the hybrid-functional is used. This
study presents a simply picture to interpret the isotope-
dependent of Tc. In the meantime, it also rationalizes
the remaining discrepancy with experiments by pointing
out the deficiency of the PBE functional, and emphasizes
the quantum nature of the high-pressure hydrogen sulfide
system.
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