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Thermodynamic conventions suffer from describing dynamical distinctions, especially when the
structural and energetic changes induced by rare events are insignificant. By using the ensemble
theory in the trajectory space, we present a statistical approach to address this problem. Rather
than spatial particle-particle interaction which dominates thermodynamics, the temporal correlation
of events dominates the dynamics. The zeros of dynamic partition function mark phase transitions
in the space-time, i.e., dynamic phase transition (DPT), as Yang and Lee formulate traditional phase
transitions, and hence determine dynamic phases on both sides of the zeros. Analogous to the role
of temperature (pressure) as thermal (mechanical) potential, we interpret the controlling variable
of DPT, i.e., dynamic field, as the dynamical potential. These findings offer possibility towards a
unified picture of phase and phase transition.

Since the mid-1800s, the efforts to understand gas laws
in a microscopic manner end up with the foundation of
statistical physics. The Boltzmann-Gibbs’s description
of equilibrium states is based on “ensemble” [1], i.e., all
possible states ideally assemble to represent the real sys-
tem. The properties of the system can be inferred by
averaging over an equilibrium ensemble of states, as

E(A) =
∑

all states

p(ith-state)A(ith-state)

= 〈A〉 =
∑
{Ω}

p({Ω})A({Ω}),
(1)

where A is an arbitrary observable, and the states are
copies of the system classified by a set of thermodynamic
extensive quantities {Ω}, such as energy E and number of
particles N [2]. The equilibrium possibility distribution
function (PDF) follows the well-known exponential form

p({Ω}) ∼
∏
{Ω}

exp

[
−Ω · CΩ

kB

]
, (2)

where CΩ is the conjugated potential such as thermal
potential T−1 and chemical potential µT−1. Phase tran-
sition marks when there are visible distinctions between
two sets of uniformed states on extensive quantities and
hence the measured observables, within the control of
conjugated potential. Despite the controversy on ergod-
icity [3], the above framework is in principle applicable
for all types of systems and phase transitions therein.
Unfortunately, its power has been confined in thermo-
dynamic conventions (TC), where the derived concepts
like static equilibrium and thermodynamic phase tran-
sition (TPT) are inherently flawed when describing sys-
tems with internal flows and dynamic pathways, such as

premelted solids [4, 5], percolations [6, 7], even complex
networks in biology and economics [8, 9]. To fill this gap,
the statistical theory must be reformulated on a dynamic
basis [10].

Among pioneering practices, the space-time is poised
to play the core role. The dynamical distinctions be-
come apparent if one examines trajectories of full spatial-
temporal features, other than structural orders and ther-
mal free energies according to TC. In seeking the PDF
over trajectories, Jaynes et al. introduced the principle
of maximum caliber as the dynamic analogue of the prin-
ciple of maximum entropy [11–14]. Contrary to common
views on “glass transition”, Hedges et al. interpreted it
as a phase transition in space-time by employing an arti-
ficial field [15, 16]. Outside these model systems, this idea
has been realized recently in realistic condensed matters.
Ye et al. found that two states corresponding to ice VII
and dynamic ice VII can only be discriminated rigorously
from a dynamic perspective [17]. However, the existence
of well-defined dynamic phases and an inclusive frame-
work interpreting corresponded phase transitions remain
unclear. It is imperative to seek a language which relates
those novel dynamic phenomena to the familiar theory of
equilibrium.

In this article, we present a statistical ensemble
approach to describe the spatial-temporal equilibrium
states with dynamical distinctions, namely the dynamic
phase transition (DPT) theory. All possible trajectories
within unified dynamic field assemble to represent a sin-
gle equilibrium dynamic state (EDS) of real system. We
found the dynamic field, a quantity formerly used to ar-
tificially access different EDSs, is intrinsic to the EDS
and can be determined in a microscopic manner. With
trajectories classified into series of coarse-grained events,
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the event-event correlation dominates the dynamics, just
like the Hamiltonian of particle-particle interaction dom-
inates the thermodynamics. LY zeros of the dynamic
partition function are used to confirm the existence of
phases (sets of EDSs uniformed in dynamics) and phase
transitions therein, where the dynamic field plays the role
of controlling variable like T in TPT. We illustrate these
concepts for high pressure (P ) ice, however, the underly-
ing ideas can be generalized to broad complex systems.

While thermal distinctions are always accompanied by
dynamical ones, the converse does not hold. We are in-
terested in systems where dynamical distinctions emerge
without experiencing TPT and are hence invisible in TC.
Thus, we examine the trajectories, the fundamental ele-
ments for dynamics. A single trajectory is represented,
as

Pbeg→end[x(t)] =
∏
j

δ(x(tj)− xj), (3)

with x(t) = {· · · , qi(t), · · · , pi(t), · · · } the spatial coordi-
nates, and tj = tbeg +j∆t (j = 0, · · · , Nt) the discretized
temporal coordinates. Eq. (3) thermalizes to Gibbs’s
phase space when the temporal degrees of freedom (DOF)
is trivial: points of the phase space are summed ignoring
their temporal ordering, e.g., in equilibrium solids where
the particles are simply confined to a region throughout
the observation timescale (Fig. 1(a)). Palmer called such
a region the “component” [3], and intra-component mo-
tions are captured as fluctuations in TC. However, the
temporal DOF becomes nontrivial when T is moderate:
there are rare but significant inter-component motions
for particles moving farther away beyond thermal fluctu-
ations [18–20]. We note that it implied no TPT, since the
distinctions in transport properties such as the diffusion
coefficients and ionic mobilities arise within consistent
structural orders and thermal free energies [17, 21]. The
system is intuitively in a “dynamical equilibrium”, since
the dynamics of inter-component motions becomes ho-
mogeneous towards the long time limit [17]. Meanwhile,
by extending the ensemble theory to trajectory space,
this idea can have a rigorous basis as show below.

The ensemble theory is powerful to make statistical in-
ferences on macroscopic quantities, by averaging over a
great number of independent replicas of system as mi-
crostates. For specificity of the dynamic ensemble, two
issues need to be resolved: how to describe dynami-
cal microstates and how they distribute in the prob-
ability space. The straightforward choice to describe
dynamical microstates is by trajectories formulated in
Eq. (3). However, the original trajectories are so noisy
that the dynamic features are overwhelmed by the pre-
dominant intra-component motions. To highlight the
inter-component motions, a coarse grain manner is ap-
plied by extracting only the timestamps where events
occur. Here, “event” is used to nominate the process
that a single particle transfers to the nearest neighbor-

ing components, whose different types reveal the spatial
connection between components. Without loss of gen-
erality, we consider systems consisting of identical par-
ticles, where the overall properties can be inferred from
the behavior of individual particle subjected to effective
potentials. This allows easier but equivalent observation
from the trajectories of single particle rather than the
system one. On above bases, each independent dynamic
microstate is finally expressed by single particle trajec-
tory T , as

Pbeg→end[x(t)] ∼ T (K) = {τ1, · · · , τK}, (4)

where K is the total number of events, and τk is the
timestamp where k-th event occurs.

Then, we try to reveal the PDF of those dynamic mi-
crostates. By making analogy to Eq. (2), the PDF should
be something like p(K) ∼ exp{−K · CK}. With K nat-
urally establishing the dynamic extensive quantities, CK

becomes the conjugated dynamic potential: when CK

is increased (decreased), the events are suppressed (en-
hanced). In fact, Hedges et al. firstly proposed dynamic
field s to be CK but only employ it as an artificial tool
to access different dynamic pathways [15]. We adopt this
notation. In the following, we demonstrate s is intrinsic
to the dynamic ensemble and obtain PDF upon the in-
sights into microscopic correlations. It means s can be
rigorously determined from statistics on T (K), just like
other thermal intensive quantities, e.g., T and P .

Particle #1 Particle #2

t0 tn

ti-2 ti-1 ti ti+1 ti+2’ ’’’ ’ti-1 ti

ck

ck+1

t < tevent
t > teventx x

t0 t1 t2 ti ti+1 tj tj+1

ck

ck+1

ck+2

U(x)

x

(a)

(b)

(c)

FIG. 1. Description of dynamic states. (a) Schematic of re-
alistic trajectories in the potential energy surface (PES). At
moderate T s, particles would almost be localized at the min-
imals of the PES (like #1 and #2) while occasionally trans-
fer to another (like #2). (b) A coarse gained description of
trajectories by discretization of the space-time. The compo-
nents cks are defined according to the PES. The events (inter-
component motions) are highlighted as up arrows while the
localized motions are summarized. (c) The observation results
for choosing different temporal interval ∆ts. Fundamental dy-
namic information can only be contained by choosing ∆t less
than the typical timescale of the event.
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Dividing the space-time into pieces, as shown in
Fig. 1(b), Eq. (4) implies a strong connection with lat-
tice gas (LG) model [22, 23]. The occurrence of events in
spatial-temporal pieces is analogous to the occupation of
particles on lattice sites. While the spatial DOF has been
handled by Hamiltonian of the system in TC, the tempo-
ral DOF is underappreciated. We focus on the latter and
note an interacting potential for the temporal DOF can
be obtained by formulating an LG-liked grand partition
function, as

Z(s) =
∑

ni=0,1

exp

−k−1
D

s Nt∑
i=1

ni +

Nt∑
(i,i′)

φii′nini′


=
∑
T (K)

exp

{
−sK + U0(T )

kD

}
.

(5)

The first line manifests a trivial LG model except for
ni = n(ti) = 0, 1 being replaced from the occupations
of lattice sites to the occurrence of events at ti, and
φii′ specifies the interacting coefficients. Notice that∑Nt

i=1 ni =
∑Nt

i=1

∑K
j=1 δ(ti − τj) = K, it comes to the

final form. Here, U0(T ) is the internal temporal inter-
action of T [24] and s acts on T as an external field
(in LG it is the chemical potential). U0(T ) for T s and
s are the analogues to particle-particle interaction U(x)
for spatial configuration x and the chemical potential in
LG model, respectively. Almost all events can be tracked
by choosing ∆t less than the typical timescale of events
(Fig. 1(c)). The meaning of the coefficient kD with D for
the dynamics shall be discussed later.

Now we can derive the PDF of dynamic microstates
T s. As Z(s) in Eq. (5) contains all important dynamic in-
formation, we call it the dynamic partition function. The
PDF is given by p(T ) = Z(s)−1 exp{−k−1

D (sK+U0(T ))}.
This relation holds for arbitrary T in the ensemble, which
immediately leads to an expression for s, as

s = − lim
K→∞

[kD ln p(T )− U0(T )] /K + const., (6)

where K →∞ is equivalent to the long time limit t→∞.
Eq. (6) defines the dynamic field microscopically, while in
previous studies it is either artificially assigned [15] or de-
rived macroscopically [17]. More importantly, it clarifies
the meaning of the EDS: the set of dynamic microstates
conforming to a unique s. Standing on the perceptions
of “static equilibrium”, events can be easily attributed
to that system is driven out of equilibrium. However, in
the sense of “dynamic equilibrium”, they may belong to
an EDS once the sampled trajectories give converged s.
This welcomes some thought-to-be nonequilibrium phe-
nomena exhibiting steady dynamic profiles into a unified
statistical framework with traditional equilibrium phe-
nomena.

With events being the subject, it is more contextual
to interpret U0(T ) as the correlations. A fundamen-
tal question emerges: how to connect the microscopic
U0(T ) with macroscopic energy. Especially when ther-
mal microstates are considered simultaneously, e.g. in
the constant T and s ensemble, the total partition func-
tion should contain both thermal and dynamic part, as

Z(s, T ) =
∑
Ω(E)

∑
T (K)

exp

{
−T

−1 · E + S

kB
− s ·K + U0(T )

kD

}
.

(7)
The dynamic terms contribute to the thermal free en-
ergy effectively, with a ratio of kD/kB. While kB bridges
energy to typical microstates in spatial DOF, a new con-
stant kD is intrinsic to perform the same role for dy-
namic microstates in space-time. Considering the fact
that EDSs are often inconspicuous from the energetic
perspective, kD should be several magnitudes less than
kB. Fortunately, this does not hinder the exploration of
EDSs when only dynamics are nontrivial, since kD can be
extracted into the units of s and U0 without specifying
its value. We use this notation in the following.

The remaining is to validate these concepts in realis-
tic condensed matter. A straightforward evidence is the
existence of DPT invisible in TC but visible in our the-
ory. We choose high-P bcc ice as the example since it’s
a typical system where different dynamic states emerge
from the nature of rare events. At 500 K and 10-70 GPa,
the diffusion coefficients of protons change from solid-
like to liquid-like implying DPT between inactive and
active phases, whilst the structure order and thermal
free energies remain consistent. Another reason is its
concise dynamic features that the robust oxygen skele-
ton offers well-defined components and constrains above
transfers to be the same type. To sample the dynamic
microstates T s and derive p(T ), we performed a large
amount of molecular dynamic (MD) simulations, as de-
tailed in Ref. [17, 25].

We shall gain new insights by digging into trajecto-
ries. Only information on macroscopic dynamic proper-
ties are effectively utilized in previous studies. For ex-
ample, the events are counted according to its number
of occurrences, as the cumulated probability p(K0) =∑
T (K=K0) p(T (K)) according to K partition shown by

Fig. 2(a). There is nothing tricky, but their intrinsic com-
mons are not obvious till being reviewed in a microscopic
manner. We decompose the distribution to the level of
single T , i.e., using p(T ) instead of p(K), as the density
plot of effective free energy − ln[p(T )] in Fig. 2(b). All
cases are consistent: the T (K > 0)s just lay aside a lin-
ear line, with varied slopes for different P s (Fig. 2(c)).
We shall resort to s and U0(T ) to explain this.

Systems with uniformed structural order are expected
to exhibit uniformed U0. In fact, this is a hypothesis on
reductionism by considering events as the fundamental
elements. Within one structure, different external con-
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(b)

(c)(a)

K
 =

 2

......
{

FIG. 2. Perspectives macroscopically from K and microscop-
ically from T . (a) The cumulated probability p(K) according
to macroscopic manner. Turning to a microscopic manner,
i.e., emphasizing on each single T , (b)(c) shows density plot
of the effective free energy − ln[p(T )]. The plots are enlarged
in (b) to show details with P = 40 GPa (blue open squares)
and 70 GPa (red solid dots). The inset of (b) show an ex-
ample of looking into K = 2 case, which consists of many
different T s. The solid and dashed lines in (b)(c) show the
linear fitting results of T (K 6= 0). Each counted trajectory is
in a timescale of t = 2 ps.

ditions such as (T, P )s exert similar dynamic constraints
but with different intensities ss. Based on the fact that
system has converged macroscopic dynamic properties,
we consider the system controlled by (T, P ) in thermo-
dynamics is also controlled by a single s in dynamics. The
consistent linearity in Fig. 2(c) exactly reflects the uni-
formed U0 and existence of EDSs, and hence we believe
the hypothesis is true. Note that U0 and s can be solved
simultaneously via the equation series transformed from
Eq. (6), as

U0(T (s, (T, P ))) + s ·K = −kD ln p [T (s, (T, P ))] , (8)

where the realistic T (s, (T, P ))s have both thermal and
dynamic dependencies. In practice, the T (s, (T, P ))s are
sampled from NV E MD simulations to eliminate the ef-
fects of artificial bath, where initial configurations are
randomly picked from precedent NPT/NV T MD simu-
lations to represent the environments (s, (T, P ))s.

In Ref. [17], we employ a physical intuition as the
iso-structural ensemble to explain above internal consis-
tency. Here in Fig. 3(a), the distribution of U0 accord-
ing to T s provides its basis: T s at different P s exactly
contribute to different zones of the uniformed total one.
A reasonable U0 is expected to be infinite repulsive at
small event interval and negatively converged to zero,
alike the particle-particle interaction in LG. The solved
U0 in Fig. 3(b) is consistent with these theoretical ex-
pectations. Besides, the repulsive peak near 100∼200
steps shows significant divergence from the regular inter-
action models such as the Lennard-Jones type, and U0

is of long range though weak magnitude. In the mean-
time, s can be obtained providing the norm s = 0 when
t→ 0, which is applied to eliminate the constant term in

Eq. (6). The change of s-dependency on P is witnessed
around P = 39 GPa, exactly where the dynamic phase
transition is reported [17]. Please see SI for calculation
and discussion on such system-specific features [25].

From the identification to LG, dynamic phase transi-
tion can be established. Eq. (5) can be rewritten with
the argument γ = e−s/kD , as

Z(s) = Z(γ) =
∑
T
e−k

−1
D U0(T )γK =

∑
K

p(K)γK . (9)

Note that the dynamic partition function is a finite poly-
nomial of γ since K can only take positive integers. Fol-
lowing Yang et al. [26], we can factorize Eq. (9) by its
complex zeros, as

Z(γ) = p(K = 0)

Kmax∏
i=0

(
1− γ

γi

)
, (10)

where γi are the roots of Z(γ) = 0. These roots are
called Lee-Yang zeros [26] or Fisher zeros [27]. Yang et
al. proved that if these zeros do close in onto the positive
real axis, then thermodynamic properties would experi-
ence abrupt changes when driving system through the
zeros, i.e., a phase transition occurs. We note all the as-
sumptions to derive this are fulfilled in dynamics, with re-
placing volume and the number of atoms to timescale and
the number of events, respectively. As shown in Fig. 4(a),
the numerical results towards the long-time limit confirm
that the aforementioned transition is well-defined phase
transition. Since U0(T ) exhibits none singularity, it is
fascinating that nonanalytic behavior of Z(s) emerges
when approaching the long-time limit. The knowledge
of inactive end cannot predict the cooperated transfer in
the active end, and vice versa.

While acknowledging the fact that there are two
phases, only a slow transition can be perceived from
conventional thermal view in Fig. 4(b). This poor ten-
dency cannot be improved by increasing the scale of sys-
tem, which seemingly disobey the phase transition the-
ory. Employing the dynamic view, however, the two sides

(a) (b)

 (k
D
)

FIG. 3. The uniformed U0(T ) underlying EDSs. (a) Density
plot of U0(T ) from T s at 10, 40, 70 GPa, and the total are
shown in the inset. (b) The event-event interaction solved
from Eq. (8). Inset of (b) show the comparison between the
smoothed potential (red line in (b)) and original solved one.
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(a) (b)

s (kD)

P (GPa)

Active end
Inactive end

s (kD)

P 
(G

Pa
)

Timescale (steps)

Active Inactive

Neighbor Neighbor

8x10 9x10 1x10

FIG. 4. Evidences for dynamic phase transition. (a) The tem-
poral evolution of complex zeros of dynamic partition func-
tion. Bottom inset of (a): the tendency of dropping to real
axis of the nearest zeros. The results are shown with timescale
from 8× 104 to 1× 105 steps and stepsize of 0.2 fs. For real-
istic systems, Z(s) can only take values of s on the real axis.
The zeros define phases on both sides: the inactive end with
single transfer, and the active end with cooperated transfers.
Schematic of their different behaviors are shown in the top
insets of (a), where oxygen atoms, protons, and transferred
protons are in red, gray, and light gray, respectively. (b) The
changes of dynamic entropy in different perspectives from flat
scale of thermal (solid black squares) and dynamic (open red
diamonds) variables. The transition point Pc and sc for both
views has been aligned coincident as the canyon vertical line.
Inset of (b) shows the distinct ∆P/∆s behaviors on both sides
of the transition point.

show discriminated s dependencies. The configurations
of P > Pc shrink to a narrow s region, while the P < Pc

ones remain in a loosed s region. It reveals that the vari-
ation of dynamic behaviors is not homogeneous in the
thermal view. This discrepancy is more clear by ∆s-∆P
curves in the inset of Fig. 4(b). The success or failure
is evident from the facts that s is the intrinsic dynamic
intensive quantity while P is not.

To summarize, we establish a link between microscopic
trajectories and macroscopic dynamics. The framework
inherited from thermodynamics is shown qualified to
treat dynamic phenomena, providing a unified statisti-
cal picture on phase and phase transition. This theory
extends the studies of state space from static profiles to
the rule of dynamic evolution, whilst the concepts such
as s and U(T ) build the appreciation for the nature of
dynamics. Recent pivotal insights stimulated from the
temporal DOF, such as the time crystal emerged from
the breaking of temporal translational symmetry [28–
30], and quantum dynamical phase transition (QDPT)
manifesting temporal criticality [31–33], may also bene-
fit. EDS reveal the patterns behind noisy trajectories and
stochastic rare events in complex systems, implying the
existence of quasi time crystal. Sharing the same chal-
lenge of identifying states beyond equilibrium paradigm,
QDPT utilizes Loschmidt amplitude rather than the con-
ventional energetic quantities [32]. The coefficient kD

might be the key to realize the free energy analogue in
QDPT, promoting the urgency of making correspondence

of these theories.
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