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Preface

Overview

* An introductory course for the quantum theory of many-body systems;

» A survey of general principles and language;

* An overview on many body techniques;

* Bridging the gap between the quantum many-body theory and real material calculations;

Contents

* Basic Theory

— Second quantization and coherent states
Green’s functions
Functional integral formalism
Perturbation theory
Effective action theory

 Applications to physical systems

— Theory of electron liquids
— Broken symmetry and phase transitions
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Chapter 1

Second quantization and coherent
states

NO31.1

1.1 Quantum mechanics

Basic concepts
* States and observables: position eigenstates |r), momentum eigenstates |p):
rlry=r|r), (1.1)
plp) =plp). (1.2)

The concept of STATE can be generalized to eigenstates of any observables/operators, not
limited to the position/momentum. An example is the spin eigenstate:

5 4) = ig ). (1.3)

« Hilbert space: all states with finite norms.
» Completeness (closure) relations:

/dr |r) (r| =1, (1.4)
/dplp> (p| =1, (1.5)
v = [arie) trloy = [arin) v, 1.6

— Note that 1 here (with or without a subscript) denotes an identity operator. It is as-
sociated with a particular Hilbert space. Identity operators associated with different
Hilbert spaces are not equal:

) (+H+ =) (== 1s. 1.7)
1# 1s. (1.8)
* Overlaps between states:
(rlr) =o(r —1"), (1.9)
{plp’) = d(p - '), (1.10)
/1 3/2 ip-r w1
(rlp) = (27771) exp ( A > . .

Schrodinger equation



» Wave function

Y(r) =(r|y). (1.12)

* Momentum operator in the position basis:

3/2
i) = [awirin @il = (5) [ eml a1
81{1( ) (1.14)

:—m%/dp<r|p><p\w>——lh—< ) = —in

 Schrédinger equation:

p?
|¢> [+V( )} ¥), (1.15)
-fww) 2 vl [ (i)
ih 5 =(r |[2 +V(@#)| W) = 5 —1har +V(r)| ¥(r). (1.16)
Heisenberg and Schrodinger representations
* In the Schrodinger representation, states evolve with time:
(1)) = e [3(0)) (117)

* In the Heisenberg representation, operators (observables) evolve with time:
P (1) = 1t/ hpeit/n, (1.18)
» The two representations are equivalent:
W) 1] v(®) = (¥(0)
= (v(0)

¢t/ =it/ ’ ¢(0)> (1.19)

P (1) ‘ w(0)> . (1.20)

1.2 Quantum statistical mechanics

Statistical ensembles

» Micro-canonical ensemble: fixed energy and particle number. The system is assumed to
be ergodic.

* Canonical ensemble: fixed particle number, exchange energy with a thermal reservoir
pocePH, (1.21)

where g = 1/kgT. Note that e=PH could be interpreted as an imaginary-time evolution
operator with ¢ = —ikg: ) )
e PH = T HH(=iRB)/R, (1.22)

» Grand canonical ensemble: exchange both the energy and particles.
poc e BH-1N), (1.23)
K = H — ;N is called grand-canonical Hamiltonian.

Thermodynamic limit N,V — oo, N/V — p.

 All three ensembles are equivalent in the thermodynamic limit .

» Except when some observable has divergent fluctuations —-phase transitions and symmetry-
breaking systems.

NOS§2.1



Partition function o
7 = Tre BH-1N),

Grand canonical potential

1
B
Expectation values
(R) =Trpk, (1.25)
b= %e—ﬁ(ﬁ—m, (1.26)

Thermodynamic relations can be inferred from the statistical mechanics

o 1

_9: L -B(H-uN) —
o ZTrNe =N, (1.27)
QO—(H- ,uN
Lo { 7> = (1.28)
orT T
o0
9 (1.29)

Note that in the thermodynamic limit, Q must be proportional to V. Therefore Q = —PV.

1.3 Identical particles

The quantum mechanics can be generalized for many-particle systems.
Product states can be constructed from orthonormal single particle states |a):
lag...an) =]a) @ lag) @ - @ |an) . (1.30)
Note that we use |) to denote the product states.

Overlap between product states:

(ag...an|a]...dly) = (a1 |a)) {az]ah) ... (an|ay), (1.31)
Yayan (T1-..TN)=(r1... "N |og...an)
= Yo, (T1) %0y (T2) -+ . Yan (TN)- (1.32)
Closure relation
> Jar..an)(on...ay| =1 (1.33)

Exchange symmetry
Only totally symmetric (Bosons) and anti-symmetric states (Fermions) are observed in nature:
Y (rp1,rp2,...,vpN) =0 (r1,72,...,7N) (BOSons), (1.34)
Y (rp1,Tp2,...,TPN) = (71)P’(/J (r1,72,...,rn) (Fermions). (1.35)
Statistics theorem: Bosons (Fermions) have integer (half-integer) spins.

Normalize symmetrized states are constructed from the product states by applying symmetriza-

tions:
. 1
Py (r1,r2,...,TN) = N ZCPl// (rpi,Tp2,...,TPN), (1.36)
P
N!' .
‘Oél...O[N> = WP‘OQ...O[N), (137)

Sym.
T/JOXTQN (Tl cee

rN) = W 3¢ e (rpa) b ) (139

NO§1.2



where we introduce the symbol

‘= 1 (Bosor.ls) . (1.39)
—1 (Fermions)
Note that P is a projection operator: X R
P2 = P. (1.40)
Overlap
1

(Br - Bulos - o) = S ((Bilay)), (141)

\ /HB ng!T[, na!

where S is a permanent or determinant for Bosons and Fermions, respectively, defined

by
Per(M) :ZMI,P1M2,P2-~-MN,PN7 (142)
P
det (M) => (=1)" My p1Ma ps ... My py. (1.43)
P

Closure relation can be obtained from Eq. (1.33) by applying the projection P:

> Plar...an)(a1...an|P ="7P. (1.44)
1.0 N
|
3 H?V’f“ o ... an) (a1 ...an| = 1p, (1.45)

where 1p = P is the identity operator of the projected space.

1.4 Creation and annihilation operators

1.4.1 Basics

Creation operator adds a particle

al |ag...an) = Vne +1]aa; ...ay), (Boson), (1.46)
ol far . ax) = 4 |@01an) adlan s ant g ion (1.47)
) 0 CYE{Oéh...,O(N}

Vacuum state |0): a state with no particle. Note that it is not a zero state! A symmetrized state
can be created from the vacuum state by

! al af .. .al |0} . (1.48)

|Oél...OZN>i\/ﬁ oy Pas an
a o

Commutation relations: the symmetry or antisymmetry properties of the many-particle states
impose commutation or anticommutation relations between the creation operators:

= [a!,a5]- = 0 (Bosons) (1.49)
= [a),, a;]+ = 0 (Fermions) (1.50)

Fock space: the creation operator changes the number of particles. Therefore, the space of all states
should include all Hilbert spaces with different numbers of particles:

B=By®B:1®..., (1.5
F=FodF1®.... (1.52)

4

NO31.4



Closure relations:

i ]
DITES Y %|a1...a1\;><a1...a1\/|:1. (1.53)

N=1aj...an

Annihilation operator «,, is the adjoint of af,, and removes a particle:

N
1 -
(0% |O[1 e aN> = \/@ ;CZ léa’ai |a1 BP0 7 @ 7 OéN> . (154)
Commutator between the creation and annihilation operators is
[Ges a:,ra]_ = aaag — agaa = dap, (Bosons) (1.55)
[@, ag]_,_ = aaag + agaa = 0qp.(Fermions) (1.56)

Number representation labels states with the numbers of particles occupying single-particle states:

log...an) = |NayMag -+ ) s (1.57)
* Bosons:
Gy My Mg « -+ ) = Vg Moy Moy « - (Ma; — 1) .00} (1.58)
QL,; Moy My -+ o) = /Ty + 1oy Tay - (N, +1).00) (1.59)
» Fermions
_Eis Mo —
Go, Moy ) = (-1) Moy Mag - - (Mo, = 0)...) Mg, =1 7 (1.60)
0 Ng, =0
_ Z;;i Naj —
ot Inasno, ) = (-1) Moy Mag - - (Mo, = 1)) Mg, 0. (1.61)
’ 0 Ng, = 1

Basis transformation: The creation/annihilation operators with respect to two bases |«) and |&)
are related by:

L=>"(alayal, (1.62)

Q>

iz =Y _(@|a)aq. (1.63)

[

Field operators are creation/annihilation operators in the position basis:

$(r) = ¢a(r)ia. (1.64)

It is obtained by setting |&) = |r).
[(r), ()] ¢ = [$1(r), T ()] ¢ =0, (1.65)
[ (r), 9T ()] ¢ = 6(r — ). (1.66)

Second quantization expresses a physical quantity in terms of the creation and annihilation oper-

ators:
Number operator:
N = al aq. (1.67)
One-body operator U =Y, i;:
U=> (al|B)alas. (1.68)
aB

(1.45)

NO p. 14



Proof
* We choose the eigenstates of 4; as the single-particle basis:

lu) = ulu). (1.69)

* We can calculate a general matrix element:

<u/1u'N‘U’u1uN><Zul> ooy lur . uw) (1.70)
= (Znuu> (uf .. uly Jur .. up) . (1.71)

u

» Therefore

U=> (uli]u)i, = (u]d]u)ala,. (1.72)

u u

* Transform from the diagonal basis to a general basis by applying Egs. (1.62, 1.63).
Kinetic energy and single-body potential

T= _% / dript (r)V2ih(r), (1.73)
U= /drU(er(r)u}(r). (1.74)

Two-body operator V = (1/2) Y, 4i;:

—_

- Z (aB|0]vd)a aﬁa\a (1.75)
apys

l\')

Note the order of the state indexes, and that the matrix element is calculated with product
states instead of symmetrized states.

Proof
*+ We assume that a two-body operator V may be diagonalized in product states:

O]af) = vag laf) . (1.76)

* We can calculate a general matrix element:

1
(o ...ay|0]ar...ay) = (221)%%) (o) ...aylar...ay). 1.77)

i#]

* The number of times that v,s appears in the summation is n,ng for a # g and
na(ne — 1) for a = 8. We can thus define a operator to count the number:

Pag = nang — 5a5na = &T aéd 3da (1.78)
and )
af

» Transform from the diagonal basis to a general basis by applying Egs. (1.62, 1.63).
Interaction

/ drdr'v(r — )T ()T () (e )b (r). (1.80)

Normal ordering: all creation operators are to the left of annihilation operators.



1.4.2 Second quantized Hamiltonians

From the “Hamiltonian of everything”, one can deduce various model Hamiltonians appropriate for
different physical circumstances. The hierarchy of these models is shown in the following diagram:

Hamiltonian of “everything”

k=3 [aritin) |5l e+ 5 X [ anar' ) e (i)

ZZe

N; 7.2 %
_Zzg:/dr : w;(r)w)—; Z|R R;|

H;

frozen ions vibrating ions

Electron-phonon coupling

effect of lattice potential
(1.83)

ignore lattice potential

Bloch wave functions, Wannier functions

Jellium model of the degenerate
(1.84, 1.85)

electron gas
(1.82)

second quantized in
the Wannier basis

second quantized in Bloch basis
ignore the Umklapp processes ) L
Tight-binding model (1.87)

one band, intra-site interaction onl
Hubbard model (1.90)

interaction in a single site

Anderson impurity model (1.92)
isolated spin limit

Kondo model (1.93)
FW§3

Degenerate Electron gas

A 2 ~ ~ ~ ~
H:{LE/W%MW%m+;/wwm@mwm
33 [ arar L e (), 18D

where V,(r) denotes the potential exerted by a uniform positive charge background (jellium
model). In the momentum basis ¢ = V*l/ 2¢ikr the Hamiltonian can be written as:

—Z a,wa;w Z Z 47Tak+qup qodpo’ k- (1.82)

q;ﬁO ko po"
Note that the ¢ = 0 component of the interaction is canceled by the potential of the positive

charge background.
Electron-phonon coupling describes the interaction between electrons and the vibrations of ions
HJ§3.1

in a solid:
. 1 . o
He_pn = \?V E Mqa;rﬂ_qakcq +h.c. (1.83)

kq



with M4 being the matrix element of the electron-phonon coupling.

Electrons in periodic potential are relevant for solids. The counterparts of the momentum basis
and the position basis are the Bloch states ¢, (r) and the Wannier states w,, (r — R;), respec-
tively. They are related by:

wn(r — R;) = > e w R (r), (1.84)
Vf‘ikeB Z.
Onk (T \ﬁ Z e By, (r — Ry). (1.85)

Note that the momentum conservation is modified to:
ki + ko = K} + k5 + K, (1.86)
with a reciprocal wave-vector K. It leads to the UMKLAPP scattering process when | K| # 0.

Tight-binding models are Hamiltonians second quantized in the Wannier function basis. A gen-
eral single-band tight-binding Hamiltonian can be written as:

H= Ztuawa]a + Z Uiir j]/awal,ﬂ/ajla/dja. (1.87)

17,0 i’ jg’
In particular, interacting terms are classified as:

Direct coupling: Uy;io = Vi, and Hy = ., Vigifuy;
Exchange coupling: J;; = Usjji, and Hy = 23, J;; (S2 -8+ inm]) where §; isthe “spin
operator”
A 1
_ Ny
=3 Z Q) ToorGio (1.88)

with Pauli matrices

o ) I R Y P

Hubbard model The single band tight-binding model with well localized atomic orbits could be
approximated as:

H=—t Z [awajg + h. c} + UZTL””W’ (1.90)
(ij),o
where (ij) denotes that 7 and j are nearest neighbors.
The interacting part can be alternatively written as:

2U

; L2 NU
Hy = U iy = =~ +

5 (1.91)

7

Anderson impurity model describes the interaction between conduction band electrons and an
impurity:

=" ¢fifo+ Ungringy + 3 [Vieflino +he] + 3 endf o (1.92)
o ko ko

Kondo model describes the interaction between conduction band electrons and a local spin:

H=Y"eifyine — ISV - 8, (1.93)

ko

where S‘((f) denotes an electron-spin operator Eq. (1.88) at the origin. The Anderson impurity
model is reduced to the Kondo model in the limit U — oo for a deeply buried impurity. The
physics of the Kondo model is the origin of correlation effects in heavy-Fermion systems. See
Ref. [10].

AS8§2.2
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1.5 Coherent states

Coherent states are the eigenstates of the annihilation operators:

(o |§) = o |9) - (1.99)

Note that one cannot define the eigenstates of the creation operators.
For Fermions, the eigenvalues cannot be ordinary numbers because annihilation operators anti-
commute. They must be GRASSMANN NUMBERS:

1.5.1 Boson coherent states
Definition

|§) = eXa Paal|0), (1.96)
Overlap

(8l6) = (0| eXnenoe

Note that coherent states do not form an orthonormal basis. Instead, they form an over-
complete basis.

9') = X 40 (0] ¢f) = exp (6 - o). (1.97)

Closure relation

/ d(6)|6) (6] = 1. (1.98)

du(¢) =[] %e‘ Saltal® = 11 d<Re¢o‘):(Im¢a)e— Saldal® (1.99)

Proof

* One can show that the right hand side of the relation commutes with all creation and an-
nihilation operators. According to Schur’s lemma, it must be proportional to the identity
operator.

* To prove the commutability, one can show

sy — At T tadl gy — O S éadl gy — O

al,|¢) = ale |0) = 90.¢ 0) = 90, |p) (1.100)
) o .
it 1) (0] = (55— 42 ) 1o e, (1.10)

then inserts the relation into the integral and integrates by parts.

Trace

:Z/dﬂ(¢><¢’fiﬂn><nl¢>=/du(¢>)<¢>’fi‘¢>. (1.102)
Coherent state representation

) = / au(6) 6) (6] ¥) = / Au(6) |6) ("), (1103)

where we define a wave function ¢(¢*) = (¢|¢). It is an anti-holomorphic function of ¢*.

« All coherent states form a Segal-Bargmann space [9].

NOs§1.5



« Onecansetupa “Schrodinger equation” for 4(¢*). An application of the representation
can be found in Ref. [].

Representation of operators:

. 9,
Ao, — %7 (1104)
al, — ¢r. (1.105)
Proof
(¢ )= 0" (9|v) = 6" (%), (1.106)
(6] aa |¥) = / @) (010 6) @ 10) = [ dut@)oe 0 6)  A.107
) O (¢*)
d ¢ -9’ i 1.108
— e [ o) = (1.108)
Unit-operator: One can prove the identity
v(@) = [ 2w (@) (1109)
by appending (¢’| to both sides of Eq. (1.103).
Matrix-elements of normal-ordered operators:
(o] A(aa)| o) = aor.0 e (1110
Average and variance of the particle number
o (9] 5]9)
N = ol 1.111
@TP Z |¢al” (1.111)
e (=)o)
(AN)? = 5T =N. (1.112)

In the limit of N — oo, AN/N — 0, a coherent state can be interpreted as a classical field.
For instances, the coherent states of phonons correspond to classical sound waves, and the
coherent states of photons correspond to classical electromagnetic fields.

1.5.2 Grassmann algebra
Grassmann algebra is defined by a set of generators {,},a = 1...n which anti-commute:
gagﬂ + gﬁga =0. (1113)

A matrix representation of Grassmann numbers requires matrices of dimension at least 2™ x
2™ [1]. It is obvious:
& =0. (1.114)

Number in the Grassmann algebra is a linear combination with coefficients of the generators:

{180 80180s> - €aras - - -Ean }- (1.115)

Note that a complex number could also be regarded as a linear combination of generators

(1,i}.
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Conjugate has properties:

(ga)* = 5;»
(6a)" = &a,
()‘fa)* = A*gj;a
(goq . '~§an)* = f;n -‘521-

Function

(&) = fo+ fr§,
A(E7,€) = ap + a1 + a1€" + a1267€.

(1.116)
(1.117)
(1.118)
(1.119)

(1.120)
(1.121)

Derivative isdefined to be identical to the complex derivative, except that 9 has to be anti-commuted

through until it reaches to act on &:

8 * _ *
8*5(55)——5-

Note that d¢ and - also anti-commute.

/dg1:/d§*1:0,
[ace= [agce =1

Integral is defined by the rules:

* Note that [ d¢*¢ is not defined! Just treat £ and ¢* as two independent variables.

(1.122)

(1.123)

(1.124)

» Anti-commute between an integral and another integral, or an integral and a Grassmann

variable.
» The integral coincides with the derivative.

Reproducing kernel (Dirac function)

5(¢, (€=,

&)
/ ag's(&,¢) f
Scalar product of Grassmann functions:
(o) = [derage (@)
= [ ae 0= €9 (5 + 59 (o0 + 8
- [agaceesion+ [acacee sio
= fog90 + f191-

1.5.3 Fermion coherent states

Definition
j€) = ¢ Zatote|0) = [T (1 - &aal) 0).
g |£> = goc |€> ’
(€lal, = (¢l &,
0
al, |¢) = ~3g. )
0
<£‘ o = +8£* <§‘ :

11

(1.125)
(1.126)

(1.127)

(1.128)

(1.129)
(1.130)

(1.131)

(1.132)
(1.133)

(1.134)

(1.135)



* &, 1s a Grassmann number -The Fermion Fock space must be enlarged to define a coher-
ent state.

¢ ¢, 4, and a' anti-commute, and (¢a)" = ater.

Proof
o 16) = T (1 €98}) (e + €atiadl) 10) = [T (1~ €a}) €al0)
B#a B#«
=TT (1 - ¢pa}) a (1 = adl) 10) = € l6)  (1136)
B

il 16) = T] (1 - &ah) (@ +&adkal) 0y = T (1 sat) ol jo)

P Bt
0 AT _
- 5171 ( B) <8§a) (1—¢&aal)0) = aga l€) (1.137)
Overlap
<§ I 5/> = 65*'5/ (1.138)
Closure relation
/Hdﬁzdé“ae*f*f €) (€] = 1. (1.139)

Trace of an operator:
TrA = Z ‘A‘ /Hdg déne=€ fz |,5< ‘A’ >
_ /Hdg;dgae—f 'fz<—§‘A‘n> (n

E/deédfae_f*'f<—§‘fl‘§>. (1.140)
The extra minus sign is due to
[agrace < @ 1e) = [dgrage € < r-ege). (1.141)
Coherent state representation
o) = [ Tlagdeae <<l ¢l 0) = [ TLagidgae <<l wie) (1.142)
(§laaly) = a(zéw(ﬁ*), (1.143)
(¢lal |v) = &v(e), (1.144)

Matrix element of a normal-ordered operator

<g ’ Aat,a)

> — £ A (e . (1.145)

Caveats

» There are no classical interpretation of the coherent states of Fermions.

* No viable approximation (e.g., stationary-phase approximation) exists.
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1.5.4 Gaussian integrals

For complex variables

/H we—zTHz-‘rﬁz—i-zTJ _ [detH]il eJTH’lJ. (1.146)

27

H is a matrix with a positive-definite Hermitian part.

For Grassmann variables
/Hdn;dme—nmwﬁnmw = [detH] oJTHTT (1.147)

Both {n;,n;} and {J; J;} are Grassmann variables. H is not necessary to be positive definite.

» The law for linear transformations of Grassmann variables:

JTaccar .0 =500 ' [TLananp o m e, (1148)

Note that the Jacobian is inverted.

« For more general cases involving 7;n; and n;n; quadratic terms, a generalized Gaussian
integral formula can be found in Ref. [20].

1.6 Summary
Commutation relation [da, a};] .= daps [darap] o = [dg,aﬁ} .= 0.

Coherent state |¢) =exp ((3, &aal)[0)
Operations a, |€) = &4 [€), af, €) = CO¢, |€), (€] al, = (€] € (€] o = Bes (€]
Matrix element (¢|A(af,a)|¢’) = e8¢ A", ¢)
Closure relation 1= [ du(¢) |€) (€]

Trace TrA = [du(€) (CE|Al€)
Representation [¢) = [du(€) [€) ¥ (£%), ¥(€%) = (€|v), (Elally) = E(E7), (Elaaly) = Dexp(€7)

Gaussian integral

/ 11 dfﬁfa ¢~ S EaHapot S (ateine) _ [qet H] < eDas aHagms

1 Bosons
¢ = {

—1 Fermions

aute = [ 5

[e3%

271 Bosons
= {

1 Fermions

&=y &8,
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Problems

1. A set of N particles are in single-particle states |3,)...|8n). The single-particle states have
the coordinate representation (r|3;) = v3,(r). Show the coordinate representations of the
normalized symmetrized many-body states for Bosons and Fermions by using the overlap
formula Eq. (1.41).

2. Second quantization:

(a) Derive Eq. (1.82).

(b) Determine the commutation relations of S; defined in (1.88). Are they the same as those
for angular momentum operators?

(c) Prove Eq. (1.91) by making use of the identity 7. - Tea = 280d0pc — dabVed-
3. Derive the closure relation Eq. (1.98) by

(a) showing

/ $)|¢) (0| = Z ) (n (1.149)

(b) and the closure relation Eq. (1.45) can be written as

Z [Py Nan -« ) (Ray Ny « -+ | = 1. (1.150)
{na}

4. Boson coherent states in the large N limit could be interpreted as classical fields. For example,
a classical electromagnetic field can be viewed as a coherent state of photons. This can also be
seen in another system, i.e., the harmonic oscillator with

R P2 1
H = o + 2mw2x2 (1.151)
(a) Show
H = hw (afa + ;) (1.152)
with
. ooy
“\ oo (a —|—a) (1.153)
b=/ (@l — a) (1154)

and a and &' satisfy the commutation relations of Boson annihilation and creation oper-
ators. Therefore, a harmonic oscillator can be viewed as a phonon system.

(b) Assume that the system is in the coherent state |¢y) at ¢ = 0. Show that the state at the
finite time ¢ is ' .
(1)) = e 2 goe ™). (1.155)
(c) Determine the expectation value (z), (p), and < g > with respect to |¢(¢)). Compare the re-
sults with those for a classical harmonic oscillator with initial values z(t = 0) = /2h/mw|¢o|
and p(t =0) = 0.

5. Prove the identity of integral by part for Grassmann variables:

/dg*dge—é*f (g - 8?*) A(E,€9) =0, (1.156)

for any A.
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Chapter 2

Green’s functions

We define a set of quantities called Green’s functions:

» Properties of a many-particle system, e. g., quasi-excitations and spectral weights, can be ex-
tracted from the Green’s functions.

» A wide range of observables of direct experimental interest may also be related to them.

We first introduce time-ordered Green’s functions, which are special because they could be conve-
niently evaluated by using the functional integrals (see §3). For general circumstances, one has to
introduce more species of Green’s functions. In equilibrium, the different species of the Green’s func-
tions can be related by the fluctuation-dissipation theorem. More generally, they can be unified into
a single Green’s function defined on a time contour.

2.1 Green’s functions and observables

2.1.1 Time-ordered Green’s functions

Real-time Green’s function

’
ag,

GO (arty, . antui b, alth) = (=) (T @l 01) .l (t)al (1) .al (1)),

where the superscript (H) denotes the Heisenberg representation. The Green’s function could (1-18)
be evaluated by using the functional integrals for an equilibrium system at the zero temperature.
(See §4.3)

Time-ordered product rearranges operators in descending order of time:
T O ()0 (ty)...0M (t,)| = PO (tp)OW (tpy) ... O (tp,,). (2.2)

P is a permutation which orders the time such thattpy > tps > ...1p,, and yields normal
order at equal times.

Single-particle Green’s function
G (at;a't') = —i <T [ag}ﬂ (t)ag,‘”(t/)} > . 2.3)
It can be interpreted as the propagation amplitude of an added particle/hole:

()> an<&T\If |e—iﬁ<t—t’>/ﬁ|a;\1/n(t')> t>t
H)

N8 (1)) = ¢ X, pa (e Ualt)le HEMag 0, (1) t<t
(2.4)

y (t)as
G(at;at):—1{<< (H)T(
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Equation of motion ofa non-interacting system: By assuming the Hamiltonian Ko = 3, (e — ) 4,0,
we have

ih%Go (at; 'ty =h < [aa, af},} <> 5t —t") + (ea — p) Go (at; a't")
= oo/ 0(t —t') + (€0 — 1) Go (at; 't), (2.5)
where we make use of the relation:

ihad?’(t):[

iy A1), Ko| = (ea — ) a0 (1), (2.6)

[e%

The equation of motion can be solved by imposing the boundary conditions:

1 / +
Golat, a't)) = —iGpq 4 1 T ¢Ma T 00T @7
(neg t—t
where n, = (al,aq)is the occupation number of the state a.
The solution is
Go(at; &/t = —16aare” 7MW 190t — ' — 1) (14 Cng) + 0 —t+1)Cna],  (2.8)

where n = 0% in the §-function is to fix the value of the Green’s function at the equal time.
The Fourier transform is

éan/ (W) = / dtGo(at; a/t/)eiw(titl)

7 SO R < —
" w (o —p) [htin w— (o —p) /h—in

} e, (2.9)

For interacting systems, the equation of motion is related to higher order Green’s func-
tions and not closed by itself.

Thermal Green’s function is the Green’s function for the imaginary time t = —ir, 7 € [0, h3):!

G (arm, . anti @l alyrh) = (<1 (T [aD(r) ..l (r)al (1) .l ()] )

(2.10)

where
A (1) = X Tage F 7, 2.11)
a®t(r) = ¥ rate ¥ (2.12)

Note that dSXH)T(T) and " (7) are not Hermitian adjoints.
The thermal-Green’s function can be evaluated by using the functional integrals for an equilib-
rium system at the finite temperature.

« Itisintroduced for facilitating the calculations of finite-temperature equilibrium systems.

* It exploits the property that the equilibrium density matrix can be regarded as a time-
evolution operator for a time-interval t = —ihg. (1.22)

* It displays the (anti-)periodicity: FW524

g

=0 — ¢ g|'ri:hﬁ ’ (213)

where 7; denotes one of the time arguments of the Green’s function.

IThe definition has an extra factor (—1)™, to be consistent with Fetter-Walecka’s definition. See FW Eq. (23.6).
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Proof
G (a0;a'7") = —%Tr [e_ﬂkd(l/{”(q—’)&a} = —%Tr [e‘Bk (eﬁkdae—ﬁk) d((}P/I)T(T/)}
=2Tr {e_’@[(d((lH) (hB) dg/{)f(r/)} =(G (ahB;a'7). (2.14)

Matsubara frequency: Because of the periodicity Eq. (2.13), the thermal Green’s function can
be related to its Fourier transform by

g (aT OZ 7' hﬁ Z —lwn T T )gaa’ (UJn) ) (215)

rLB 4 /
Gaar (Wn) = / dre“n(7=7)g (ar,a'1'), (2.16)
0

where we assume that the system is time-independent, and hence G (ar,o/7') = G (a7 — 7/, &/0).

The discrete set of frequencies is defined by

2mn Boson
wn = {{%’ﬁmﬂ rermion” " € 7 2.17)
hB
Equation of motion: For a non-interacting system, we can establish:
0 €q — It P ,
T gO(aT7 a'T ) = 6aa/5(7- - T ) (218)
or h

* The solution is
Golar,a/t') = —bpare” =TV [0(r — 7/ — ) (1 + Cng) + CO(T — T+ n)nal . (2.19)

» The periodicity Eq. (2.13) yields

(na = e Pl (14 (na), (2.20)
1
Mo = e ¢ (221)

which is the Bose-Einstein (¢ = 1) or Fermi-Dirac (¢ = —1) distribution function.
* The Fourier transform is
eiwnn

gOoca’ (wn) = 6040/ iwn — (Ea — /i) /h (222)

2.1.2 Evaluation of Observables

Kinetic energy

:iC/dgr {hQViG(rt;r’t*)] / (2.23)
—icy / dskdw h2k2 Gk, w)e“n, (2.24)
where ¢t =t + 01, and
G (rt;r'th) = —i <T W(H) (rtw(H”(r’#)D : (2.25)
Gk, w) = / dr / AtG (rt; rt) e~k (r=r )i (1=t) (2.26)
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Interaction energy

f/ _ K /d3 K = + h—VQ + M) G(rt;r’t’)} (2.27)
r'=rt'=tt
3 21.2
- IC /d kdw iw ( M +:U'> é(k,w). (228)
2m

To derive the formula, we make use of the identity:

&T(rt)ihazzja(;t) =T (rt) (;;w - u) O(rt)+ / dr' T (rt) )t ('t o(e — ) (r't)d(rt). (2.29)
Total energy
Eo T+ V C/d?’ [( = %Vi +p) G(rt;r’t’)]w_T s (2.30)
_ IC /dgkdw i ( n 71227:; +u) Gk, w) (2.31)
= 50/% wz / (‘21:;’3 elon (ihwn + };2—:; + u) Gk, wp) (2.32)

Note: The use of the one-particle Green’s function for evaluating the total energy could be dan-
gerous: a seemingly innocuous approximation having little effect on one-particle properties
may have a large uncontrolled effect on the energy.

2.1.3 Response functions
Linear Responses

Conductivity To calculate the conductivity of a system, we introduce an external electric field,
and see how much the electric current is generated:

» The external electric field induces a modification to the Hamiltonian
f=—c / drp(r)o(r), (2.33)

where ¢(r) is the electric potential, and j(r) = ¢ (r)i(r) is the density operator.
» We need to calculate the expectation value of the electric current density operator

i) = S {1 [Vi)] - [wite)] 4] (234

to the linear order of the electric field, or ¢(r).

* Alinear response has a useful property: the total response to multiple fields is the sum of
the responses to each field.

Linear response formula We consider a time-dependent infinitesimally small external field:
Hy(t) = H+ OU(t). (2.35)

Evolution operator [¢(t;)) = U(te, t;) [0 (t)):
ihd—lf{(t, t) = Hy(OU(L, t), (2.36)
Z/l(tf, i) = T exp {/ HU dt} = lim e i€Hu(an)/ho—icHu(tu-1)/h efiEHU(tl)/h,

M—o00
(2.37)
where we split the time interval [¢;, ] into M infinitesimally small time intervals e =
(ts —t;)/M,and ¢, = t; + (k—1)¢, k = 1... M. The evolution operator for the full time
interval is obtained by accumulating the action of the evolution operator for each
small time interval.

18
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Response of a wave-function

5 l(e) /dtlUtl )) b(8) (2.38)
U—0
5[;{(t,tl) . An o LA(—t) AH(H)

S |, =5 Ut 1)U (b, 1 )Uﬁof lem JOW (1), (2.39)

. R t
S y(t)) :f%e*%mt*m/ At O () o (1)) U (ty). (2.40)

123

where

O (1) = e Ht=t) O =1 A=) (2.41)

Expectation value of an observable R:

=2 on [(n) | R 60n0) + (00| B 0n0)]  242)

- f% /0; At 0(t — t1) <[R<H> (t), O (tl)} > U(ty), (2.43)
Dho(tt) = ;5((;)) - —ihe(t ) < [R(H)(t),O(H)(t’)] > (2.44)

We see that:
* The response function is a retarded one.
* Itis related to a correlation function between operators.

Scattering experiments

» An external particle interacts weakly with the constituents of a many-body system through
an interaction v(r — r’). Examples include electron energy loss spectroscopy (EELS) and
neutron scattering. The scattering cross section is related to the density correlation func-
tion:

w) = |vg|® / dtel! (p} (t) pq) , (2.45)

where pq = >, exp (—ig - 7;) is the Fourier transform of the density operator, and vq is the
Fourier transform of the interaction.

Proof

— We determine the transition matrix element of an external particle scattered from
wave-vector k to k + ¢, and the probed system from |a)to |3):
a>

Tus(q) = / dr <B ISy (p ) T
a> — vq (8] pal ). (2.46)

oy <ﬂ

— The scattering cross-section is determined by Fermi’s Golden rule:

2 R
Oa (4:0) = T vql* D6 (By = Ea — 1) (8] pg | @) (2.47)
B
= o’y / e (I (2.48)
B
= log? Y / dte ! (o | LI B) (8] gl a)  (249)
B

- |vq|2/dt et (| pl(t)pg | ). (2.50)
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Figure 2.1: The spectral function can be measured by the angle-resolved photoemission spec-
troscopy (ARPES) technique. The measured intensity is proportional to f(w)A(k,w), where f(w)
is the Fermi distribution function. (b) and (c) illustrate the spectral functions of non-interacting
systems and interacting Fermi-liquid system, respectively.

— Average over the initial state a.

» Angle-resolved photoemission spectroscopy (ARPES): a photon excites a photoelectron out
of a many-body system (see Fig. 2.1) [7]:

In(w) / ate (a, 0)an(1)). (2.51)

2.1.4 Species of Green’s functions

Time-ordered Green’s function

Glrt:r't') = —i <T [zﬁ(rt)w(r’t')b (2.52)
Retarded Green’s function
Gr(rt;r't)) = —i0(t — t') <[1§(rt),1/ﬁ(r/t/)} <> ) (2.53)
Advanced Green’s function
G2 (rt;r't)) = i0(t' —t) <[1ﬁ(rt),¢}1‘(r/t/)} <> ) (2.54)
Lesser Green’s function R R
G<(rt;r't)) = —iC <¢T(T't’)¢(rt)> . (2.55)
Greater Green’s function A A
G (rt;7't) = —i <¢(rt)w(r’t’)> . (2.56)
Relations
G'-G*=G” -G~<, (2.57)
G=0t—tG” +0{t —t)GS=G<+G" =G~ +G*, (2.58)
G'=0(t—-t)[G-G°], (2.59)
G*=-0(t'-1t)[G” - G~], (2.60)

where the Green’s functions all have the argument (rt; r't).

Conjugate relations

G*(rt;r't)) = [G*(r't';rt)]", (2.61)
G=(rt;7't)) = — [G=(r't';71)] ", (2.62)
G” (rt;r't) = — [G™ (r't'srt)]". (2.63)
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Why?

* G has a systematic perturbation theory in an equilibrium system.
+ G'/* have a nicer analytic structure and are directly related to physical responses.
* G<~ aredirectly related to observables and the interpretations of scattering experiments.

2.2 Fluctuation-dissipation theorem

For equilibrium systems, all the Green’s functions can be linked via the fluctuation-dissipation theo-
rem.

2.2.1 Real time Green’s functions

Spectral function

Alk,w) =[G (k,w) — G*(k,w)] = —2ImG" (k,w) (2.64)
=i[G” (k,w) — G<(k,w)] (2.65)
— / Tt et <ak(t)a; - ga;ak(t)>. (2.66)

» The spectral function can be directly measured by using ARPES technique [7].
o Sum rule:

/_Z %A(k,w = <[dk(t),&};(t)} —<> —1. 2.67)

» The density of states can be computed by

d3k
p(w) = / Gy Alee) (2.68)
+ For a non-interacting system,
A(k,w) = 216 (w _ - “) . (2.69)

It indicates that a particle with the momentum %k has a definite energy e.

 In an interacting electron system, A (k,w) for k near the Fermi surface usually shows the
peak-dip-hump structure: a peak (coherent peak) near w = 0, a dip, and a high-energy
broad hump (incoherent peak). The finite width of the coherent peak indicates the finite
lifetime of a quasi-particle. See Fig. 2.1(c).

¢ In equilibrium, all the Green’s functions can be related to the spectral function.

Fluctuation-Dissipation relations

G<(k,w) = —C% /dt et E e~ Pl gl (Km—Kn)t/h <n al. ‘ m> (m|ag|n) (2.70)
i K, - K

_ n m —BK, ~ 2

= _CE ngm 2md <w - h> e [(m|ag | n)|", (2.71)
i K, - K

_ n = Km\ sk, A 2

G~ (k,w) = —anm27r5 (w h> e [(m | ag | n)|” . (2.72)
We obtain

G~ (k,w) = P G<(k,w). (2.73)
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» Making use of the definition Eq. (2.65), we have

G<(k,w) = —iln¢(w)A(k,w), (2.74)
G~ (k,w) = —1[1 + (n¢(w)] Ak, w), (2.75)
ne(w) = eﬂhwl — (2.76)

» Making use of Egs. (2.58-2.60), we have

Cne(wr 14+¢ne(wr
G(k,(,d) dW1 T w— fj(l 1)7] + w— wiim)
G*(k,w) :/Q—A(kz w1) wfwlﬁm 2.77)
Ga(k’ ) wfwllfin
+ [t follows:
Gk
Re Gr k:,w P/d;’l (k1) (2.78)
Ga T W—Wwi
¢
G(k,OJ) — [tanh ng} 1
Im{ G'(k,w) ;= _ §A(k,w). (2.79)
Ga(k,w) +

2.2.2 Thermal Green’s function and analytic continuation
The thermal Green’s function can also be related to the spectral function by:
e A
G(k,wn) = / duon Alk,w1) (2.80)
oo 2T iw, —wy
The derivation is similar to that for the real-time Green’s functions.

Analytic continuation: The real-time Green’s functions at the finite temperature can be obtained
from the thermal Green’s function via the process of the ANALYTIC CONTINUATION:

1. We have:

G (k,w) = G(k,wn) i, —yutin > (2.81)
(2.82)

wn) |iw"—>wfi77 .

2. With an analytic form of the thermal Green’s function, the spectral function can be deter-
mined by

Ak, w) = i {g(kz,wn)hwn_wﬂn — G(kswn) i, o] (2.83)

FW§31

2.77)

(2.64)

3. Otherreal-time Green’s function can then be obtained by applying the fluctuation-dissipation

relations Eqgs. (2.74-2.77).

2.3 Non-equilibrium Green’s function

Motivation We introduce the non-equilibrium (Keldysh’s, or time contour-ordered) Green’s func-
tion because:

* The real-time Green’s function are directly related to physical observables. Unfortunately, they
are difficult to calculate.

* The analytic continuation is only useful when we have an analytic expression for the thermal
Green’s function. If determined numerically, the thermal Green’s function is only defined for
a discrete set of the Matsubara frequencies.
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Figure 2.2: Time contour C for defining the non-equilibrium Green’s functions. Note that Green’s
functions in the vertical part of the contour have the (anti-) periodicity Eq. (2.13). Adapted from
HJ§4.3.

* When the system is not an equilibrium one (e.g., a system driven by a strong external field
beyond the linear response regime), the analytic continuation cannot apply.

* By introducing the non-equilibrium Green’s function, all real-time Green’s functions can be
unified into a single Green’s function.

* Itis motivated by the observation that all real-time Green’s function (e.g., G>) can be converted
to a contour-ordered trace:

Tr [efﬂﬁa (= Lo, 6) () (1, ) D (YU (¢, 7%)}
Tre—8H
T [a (G e - ) a (G ) e e ) B (1, - )]
o Tre—AH
T [Toet Jo WO (i) (/1)
Tr [Tce—% Je dmm}

G (rtyr't') = i (SO ()T (1)) = i

= —1

. (2.84)

where ¢ (rt~) and o' (#/¢'+) in the last line are not Heisenberg operators: their time arguments
just indicate where they should appear. A time (contour) ordered trace can be conveniently
evaluated by using functional integrals.

Time contour is defined in Fig. 2.2.

Contour-ordered Green’s function is defined as
Ge(rt,r't') = fi%Tr Tee 1 Je HO G (re)t ('t | | (2.85)

* There are two-branches of the real time: C; and C,. The real-time Green’s functions can
be obtained by assigning appropriate branches to their time arguments:

G(rt,r't') = G& (rt,r't)), (2.86)
G (rt,v't") = G& (rt,v't), (2.87)
G<(rt,r't') = GE(rt,r't). (2.88)

» The four components of G¢ are not independent:

GY +GZ = G + GZ. (2.89)
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2.4 Summary

The following diagram shows the choices of the Green’s functions for different circumstances:

Equilibrium?

Zero temperature?

Real-time formalism?

No

Real-time Green’s function Thermal Green’s function (2.10)  Contour Green’s function
2.1 (Analytic continuation) (2.85)

Problems

1. Determine the Fourier transform of Eq. (2.8). A useful identity is:

dw eiwt

o(t) = (2.90)

Tﬂw—in’

where n = 07 is an infinitesimal positive constant.

2. Derive Eq. (2.74-2.79) and (2.80).

3. There also exist fluctuation-dissipation relations for response functions. Consider the density
response function

i . .
D (gt =) = —5550(t = 1) (13 (1), p-q(t)) (2.91)
where pq(t) is the Fourier transform of the particle density operator, and p_q = p}.
(a) Obtain an expression similar to Eq. (2.70) by inserting a complete set of basis.
(b) Define a spectral function which gives rise to D* through a relation similar to Eq. (2.77).
(c) Define a time-ordered density correlation function

Dig,t 1) =~ (T lpg(t)pq(¢)). (2.92)

Establish a relation with the spectral function defined in (b).
(d) Whatis the relation between the spectral function and the scattering cross section Eq. (2.45)?
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Chapter 3

NO§2.2

Functional integrals

We first introduce the Feynman path integrals. The functional integrals are nothing but the “path
integrals” for the coherent basis.

3.1 Feynman path integrals

To evaluate the time evolution function
U (ete, xit) = <xf ‘e_%mt‘_t‘) ‘ $i> . (3.1)

The path integrals are constructed as follows:

 Time-slicing: break a finite time interval into infinitesimal slices At = ¢ = (¢ — ¢;)/M, and
insert the closure relation between the time slices:

M—-1

_ie [ _ie [ _ie [
Z/I(xftf,xiti):/ H day, <xf‘e hH’zM_1> <:cM_1‘e hH‘:cM_2>...<x1‘e nH
k=1

xi> . (32)

+ Evaluate the evolution operator for each of the time slices

— Insert a complete momentum basis:

<1'n $n71> = /dgpn <xn |pn> <pn

— Express H in the normal form: all the j’s appear to the left of all the &’s;

icH

icH o—iF

e R

xn,1> : (3.3)

—iRH Tpo1) m e @) (p g, 1) 4+ O(€);

1-icH

- <pn ’6 xn—1> ~ <pn

— Carry out the integral over p,: for a system with H = p%/2m + V (z),

/ dpn (zn [ pn) <pn

1 i 2
)= — [ dp, Lpn(@n—2n_1)—ep2 /2m—eV (z,_1)]
v 1> 2mh Pne

. m i 1 Ty — L1 2
S P R

— The approximation has some arbitrariness:

* e H/M or 1 —ieH/h? -The p,, integral should be convergent.
* V(xn-1), V(zy), oT [V(2n-1)+ V(z,)]/2? -They are equivalent in the continuous limit
e — 0, but [V(z,-1) + V(2,,)]/2 yields better precision for a finite e.
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* Chain the evolution operators of the slices together

M—-1 21— 2
m \3M/2 *Ezk 1[% (%) *V(M—l)}
te,ait) = i dz
U(xety, x5 1 /H Lk 27T1€h)
xete Tty
= / D [z(t)] eh Ju dt(ama®-V(=(®)) = / D [z(t)] en SO (3.5)
xi,ti Ti,ti

where z; = z¢ and zg = z; are implied, and

2(t)] = /t " L), 2(0)] (3.6)

is the classical action of the system, and L is the Lagrangian. We note that the continuous form
is defined by the discrete form.

Hamiltonian form

€ 7”“’”—17@7V Th—1
U (xste, xit;) = hm /H dzy dpk h Yt 1[ ¢ z V(@ )] (3.7)
xety
_ / D[x(t)’p(t)]e%f:fdt(p(t)a'c(t)—H(p(tm(t))). (3.8)
Ti,ti

Note that there are M — 1 intermediate positions and M momenta.

Matrix element of a time ordered operator can be expressed as a path-integral:

zsty
/ D (1] 01 (#(01)) O (a(t2)) e+ ) 39)
/dl‘ldl‘g xftf,xltl) O (.131)2/[ (1‘1t1,$2t2) 02 (1‘2)“ ($2t2, inti) tl > t2 (310)
xftf,xgtg) O (xQ)L{ (Igtg,xltl) 0, (Jil)u (:Cltl, :Eiti) t1 < to
b
. -3 fdtH (t)

E< T O tl (t2) ti l‘i> (311)
Ty Z/{ (tl,tg) 2 ( ) x; t1 > to (312)

Ty L{ O (tg,tl) 1 (tl,tl x; t1 < to
xf ‘u (tr, 8T [0<H>(t1)o( >(t2)] x> (3.13)

where t; > t1, to > t;. We note that:

* O,(t;) and Oy(t2) in the second line are not Heisenberg operators. The time arguments
just indicate which time-slides the operators act on.

* In case of 0172 also depending on p, first express the operator in the normal form, then
use the Hamiltonian form of the path integrals, and apply the substitution O (p, ) —
O (Pr+1, Tk)-

* The time-order product of two (or more) Heisenberg operators is not a time-ordered op-
erator!

3.2 Imaginary time path integrals and the partition function
 The partition function is just the trace of the imaginary time evolution operator:

Z =Tre PH = /dx <x ’ e P ‘ x> = /dxu (@, —ihB;20) . (3.14)
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» The imaginary time path integral can be obtained by analytic continuation ¢ — —ir:

U(zsmr, 7373) = A}lgloo/l\jf[: day, (%>% exp {;L :_/Il l;m <Ik:k—1)2 N V(xk—l)] }
(3.15)
= /ffD [2(7)] exp {—;/fdf [% (#(1))? + V(x(T))] } (3.16)

where xzg = x; and x; = x¢ are implied.
* The partition function is a sum over all periodic trajectories in € [0, h3):

M m 23 € M 1 T T 2
. 2 € 1 k— Th—1
Z= A}Tm/gdz’“ (Qﬂeh) eXp{ h [27”( ¢ > +V(I""1)1 } (3.17)

k=1
hp

= / D [z(7)] exp {—;/dT [% (#(1))? + V(x(T))} } (3.18)

(hB)=2(0) 0
where xg = x, is implied.

Thermodynamic expectation value of an imaginary-time-ordered product of Heisenberg operators
can be expressed as an imaginary-time path-integral:

P [AHE (- HE) _ Yo LA [AE) (- AE)
(T[0F (1) O ()] ) = 51 {77 [0 (r1) OFY ()| } (3.19)
—H(RB—T) /R, p—H(Ti—T2) /B )., p—H(T2—0)/F
_lp e Ore™ Oze =T (320)
Z e~ H(B=72)/h()ye=H(r2=11)/h() e =H(m=0)/h -, > -
1 I A A L rRB g7
= ETr{T [01 (1) Os (2) e~ Jo” dﬂ(ﬂ}} (3.21)
hpB
1 —% [ Ar[3 @) +V (@(n)
=y [ pLmioGE)oeme g
z(hB)==(0)
(3.22)
Classical isomorphism maps a quantum particle into a classical ring:
hp
1 m . 2
Hieo ()] = 75 / dr |2 @)+ V ()] (3.23)
0
1 M 1 Tp — T 2
— Tk—-1

with To =M.

» 7 could be interpreted as the internal coordinate of the classical ring.

« After discretization, a quantum particle is mapped into a classical ring polymer with M
beads [4]. The first term becomes the elastic energy of the ring polymer. See Fig. 3.1.
The mapping underlies the path-integral Monte-Carlo/molecular dynamics (PIMC/PIMD)
approaches for simulating quantum systems.

Exchange symmetry for systems with identical particles modifies the result to

zz%ZgP / [ID () e

ci(hB)=zp;(0)

hp
7% bf drH(z(7))

(3.25)

There are two choices for intermediate states:
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Figure 3.1: In the classical isomorphism, a quantum particle is mapped into a ring polymer with M
beads. Each of the beads corresponds to the particle at an imaginary time instance. Here we show
the case of M = 5. Adapted from Ref. [4].

» un-symmetrized product states
* (anti-)symmetrized states

The two approaches are equivalent. However, in stochastic evaluations, it may be advanta-
geous to use the anti-symmetrized states for Fermions.

It is extremely difficult, if not impossible, to implement the exchange symmetry using path
integrals.

3.3 Functional integrals

The functional integral are the “path integrals” for the coherent states (instead of the position eigen-
states). The effect of the exchange symmetry is automatically taken care by the second-quantized
form of the Hamiltonian.

With the coherent basis, the time evolution function is defined by

U (W te,its) = (e | e FHE0) [, (3.26)

The functional integral approach proceeds as follows:
 Apply the time-slicing and insert the closure relation of the coherent states:

Ut it /H ] i WH@%\ R |y, (327)

where ¢}, = ¥f and ¢, = ¢; are implied.

* Transform the second quantized Hamiltonian to the normal form: all creation operators appear
to the left of annihilation operators. The matrix element of a times slice is

<¢k \ e wH(aa) |y, > ~ exp [qp;; Pt —i%H(u},’;,u}k,l)} . (3.28)

« Evolution function is:

dyid
it - i [ | 11 [ s {5 s A )

e~ Yk — Y1
+Hir Z [mw,’; — —H (wz,wk_l)” (3.29)
=eVi v / [v*, ¥] exp (W) (3.30)
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i 8
st = [ ae [0 250 - 1 w0000 (3.31)
The boundary conditions ¢}, = ¢*(tr) = ¢f and ¢ = ¢ (¢;) = ¢ are implied.

— Note that the continuous form Eq. (3.30) is defined by the discrete form Eq. (3.29). Adopting
different discrete forms may lead to wrong results.

— Note that the subscripts index the time slices. The field variables ¥ and ¥* may have
multiple components 4%, 1)**. Depending on what the component index « refers to, the
fields are interpreted as:

+ for position a = r: > — ¢(rt), A- B = [ drA(rt)B(rt);
* for momentum a = p: ¥ — Yp(t), A- B =37 Ap(t) Bp(1).

3.4 Partition function and Green’s functions

One can express various quantities as functional integrals.

Partition function is just the trace of the imaginary time evolution operator. By applying the trace
formula of coherent states:

7 =Tre PK = / {W} VY <C¢ ’ o BEK

. /H [d%diﬁk} —(e/R) z [P (P e /B) FH )] (3.33)

o) (3.32)

M—o0 N
= D [*, 9] exp <—S [, 7’[}*]) , (3.34)
$(0)=Cy(hB)
hB
Sy, = /0 dr [*(7) - (h0r — p) (1) + H (" (1), 4(7))] - (3.35)

Boundary condition is a result of the trace formula of coherent states:
Yo = (Y, (3.36)

Thermal Green’s functions can be expressed as the average of ¢,’s and ¢%’s:

g(”) (171y .. QT 0/17'{7 ahTh) = # /D [, 0] exp <SW}};W)
X Yoy (T1) -+ o, (1) (1) 5 (7). (3.37)
The periodic boundary condition ¥ (h3) = ((0) is implied.

Contour ordered Green’s function Eq. (2.85) can also be expressed as functional integrals:

Go (rt,'t) =~ [ DI ulv () v (0 exp (SC“,!;“) | (3.38)
el = [ at i) 25 1w 0,000 3.39)

where the time is defined in the contour shown in Fig. 2.2. The periodic boundary condition
between the two end-points of the contour is

(] <—T°> =y (— — lhﬁ) (3.40)

Non-interacting system
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Partition function for Ky = 3" (e — 1) af,da

M M ax a a Blea—H) o
. dyprdyp = 2 i [(wr—wp_, )+ 27y ]
Zy = A}@OOH/}HNe = (3.41)
M dwo&*dwa
_ k 9V _p( @) gle) (@)
= A}l—rflool;[/kl:[l G exp[ YL G ) } (3.42)
—< —¢
_ 1 (@) _ _ (e Blea—p)
= Jim_ [dets } - 1;[ (1 Ce ) : (3.43)
1 0 0 —Ca
—a 1 0 0 N
1
0 —a 1 &
gl = o — | P o Bl i) g gy
0 —a : M
0 1 0 Vil
| 0 —a 1 |
where we make use of the Gaussian integral formula.
Thermal Green’s function
o ¢ &
gO(aTqa @ Tr) - _5(1@’?8‘];6JT
M (@) 3./ () ) o) (@ (e )«
/H dwk -/\;h/]k e*ijw,(c ) S,ij)dé >+Zi<Ji "pf )+’¢§ ) Ji) (345)
k=1 J=J*=0
0? -1
—_5 * | gla) ) 3.46
O (ZJ] [s] Jk) (3.46)
Ik J=J*=0
= Sour (S@) (3.47)
(),
= —Jpqre” CoTTmT/R G2 1) (14 Cng) 4 CO(Tr — Tg) N0 - (3.48)

where Z{*) = [detS©®] .

Matrix formula The partition function can be expressed as a matrix form which is indepen-
dent of the choice of basis. By making use of the matrix identity detS = exp (Trln S) and
Eq. (3.47), we have:

Zy = exp [—CTr In (—Gal)} . (3.49)

—Gy ! should be interpreted as a matrix similar to Eq. (3.44) with a — a = 1— (ho — p)/M,
where hq denotes the single-particle Hamiltonian operator.

Problems

1. Derive the path-integral formulation for a particle in a magnetic field with the Hamiltonian

~ 2
H= m, (3.50)

2m
where A(r) is a magnetic vector potential.
2. Derive the Gross-Pitaevskii (GP) equation:
(a) Determine the second quantized Hamiltonian for Bosons with interaction V (r, ') = gé(r—

r').
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(b) Determine the GP equation by applying the variation principle §S = 0 (see Eq. (3.31) with
respect to ¥*(r).

3. Can the ordinary real-time-ordered Green’s functions Eq. (2.1) be expressed as functional inte-
grals without using the time contour? Why?

4. Derive the frequency-sum formula by applying Cauchy’s residue theorem: FW (25.38)
1 eiwne B Ceﬁw
RG 2y =z~ g OTO<e<hB (351)
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Chapter 4

Perturbation theory

4.1 General strategy

1. Decompose a Hamiltonian into two parts:
K=FKo+V, 4.1)

where K| is solvable, and can be written as a diagonalized quadratic form

IA(O = Z (eoz - ,LL) dldaa (4.2)

and V (af,a) is the interacting part.

Choices of the zeroth order Hamiltonian: Properly choosing K, is the most important step
of solving a many-body problem. It is not always obvious what would be an appropriate
choice. For instance, there are (at least) two choices of K, for the electron gas Hamiltonian
Eq. (1.82):

* An obvious one: the kinetic part of the second-quantized Hamiltonian

R ﬁ2k2 i
Ko = - Oy, Qko 4.3
0 %;<2m/ u)amuk (4.3)
A 82 4 AT At . "
V= v Z Z ?ak+qaap_qa,apgrakg. (4.4)
q#0 ko,po’

This is the appropriate choice for the electron liquid phase.

» Assume electrons are localized spatially and form a regular lattice (Wigner crystal) r; =
u; + RY. Using the first-quantized form, we have:

. n_, 1 e?
H——Z%Vi+va(ri)+524‘ri_rj| (45)
i i i#£]
R, 1
Ho

where E| is the Coulomb energy of the regular lattice of electrons, H, is obtained by ex-
panding the Coulomb interaction to the second order with respect to w; (harmonic approx-
imation), and ... denotes all higher order terms. Hy can be diagonalized, and becomes a
phonon Hamiltonian;,
Hy =) hrabl,bia: (4.7)
k,a
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where by, and ET,W are Bosonic annihilation and creation operators, respectively. We note
that the exchange symmetry of electrons can be ignored in this case. This is the appropri-
ate choice the electron solid phase.

The two choices represent two distinct phases of electrons. Starting from an inappropriate choice
of Ko, one can never reach a correct answer just by applying the perturbation approach we are
about to discuss.

2. Express physical quantities as functional integrals:

So [1,¢*] + Sy [, w*]) (4.8)

re [ pwvien(-BL1E

¥(0)=C(hB)

=27y <eXp (_W>> , 4.9)
0

where
SO ¢ w E/ ha‘rw( ) Z(ea _N) Ve (T) Yo (T)] ) (4.10)
Sv [, 9] z/ V(0" (1), 9(7)), (4.11)
(Fw ), =5 / D[y, 0] e S/F (4, 0). (412)

Y (hB)=C (0

Note that V (¢*(7), (7)) is obtained by applying the substitutions ao — ta, af, — ¥} to the
second-quantized form of V' in the normal order.

3. Expand Eq. (4.9) in a power series of V:

Z (1R
Z:Z% i dry . dr, (V(11) ... V(T0))g - (4.13)

4. Evaluate the expansion by applying the formula

<7/}041 (Tl) s 7/}(171, (Tn)l/};;n (TTIL) o 1/%‘1 (T{)>O = (71)71 Z CPgoOthﬂn (TPH, 7—7/1) cee goaP1/31 (TPla T{) )
P

(4.14)
which is a result of the Gaussian integral formula

f D [w*, w] G iy -y, ;«n o ;2¢;1€— 220 i Siv; Z CPS
- iPnyjn

Sim 415
D[ ¢le” 2 YISy ( )

ip1,J1°

We note that Sigl = —[Go];; when applied to Eq. (4.12)..

Wick’s theorem is basically a re-statement of Eq. (4.15):
* Pair each +; with a ¢5 (a complete contraction). Each of the pairs contributes a factor
-1
Sij -
* The sign ¢” is determined by the permutation P that brings ; with +? in all pairs to
adjacent positions.

(Yo (11) -+ o, (Ta)V5, (T,) - 0, (T{)>O = Z all complete contractions. (4.16)

Convergency A perturbation theory usually yields an asymptotic rather than convergent series, as
demonstrated by a simple example:

d z2 g..4
Z(g) = —\/%6‘7‘1’6 ~> 9" I 417
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g=02 -
a0
920,08

Rn

%g"Zn

10—10

T

o R g

Figure 4.1: Asymptotic expansion of Z(g).

» The series is not convergent because ¢"Z,, ~ (4gn/e)"//nm — oo when n — oo.

Asymptotic convergence: A finite number of terms sometimes gives a better approxi-
mation: minimum ¢g"Z,, ~ /4g/mexp(—1/4g) occurs at n ~ 1/4¢. See Fig. 4.1.

» Appropriate re-summations could improve the convergence. See §5.2.

« A non-convergent perturbative expansion often hints an inappropriate choice of K, -the
possibility of a non-trivial phase.

4.2 Finite temperature formalism

We explicitly evaluate the expansion for a two-body interaction:

V(7). ¢(n) = 5 > (@Blo]78) () 5(m)vs(T)ihy (7). (4.18)
afyd

[t leads to the Feynman diagram technique.

4.2.1 Labeled Feynman diagrams
We can represent (V(r) ...V (r,)), with a set of diagrams.
General idea

* A contraction, i. e., a Green’s function, is represented by a propagator line __,, .
» Each interaction matrix element (af || vd) is represented by a vertex with two incoming
and two outgoing lines -3

» The n-th order term of Eq. (4.13) is represented by a diagram with n vortexes and 2n
propagator lines.
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» Connect interaction vertexes with propagator lines, by all possible ways.
» Draw all distinct diagrams, and determine signs and coefficients.

Distinct labeled diagrams

» Labeling each vertex with a time 7 and a direction.
* Labeling each propagator with a direction.

* Two labeled diagrams are distinct if one cannot be deformed so as to coincide completely
with the other, including both:

— the time labels of the vertexes;
— the directions of the vertexes and the propagation lines.

Signs and coefficients

» Each closed Fermion loop of propagator lines contributes a sign —1.
* An n-th order diagram has an overall factor (—1/k)™/2"n!.

Rules for labeled diagrams

1. Draw all distinct labeled diagrams composed of n vertices } > { connected by 2n prop-
agatorlines __ .

2. Assign a state index to each propagator line and include the factor

T

a !
/ = GoalT — 7)) = —e CamW=T/R (1 L (n)O(T — 7)) + (nab(r' — 7)) . (4.19)

7_/

» Equal time propagators with 7 = 7/ are interpreted as 7' = 7 + 0T, because the time
order is the same as the normal order for equal times.

3. For each vertex, include the factor
o B
} - { = (af 0] 79) (4.20)
v )

4. Sum over all state indices and integrate all times over the interval [0, #5).
5. Multiply the result by the factor

(=1/m™ 1 X (" x (1) = (—l/h)nCnL (4.21)

X —
n! n 2nn!

where ny, is the number of closed Fermion loops. The origins of the different factors are:
(@) (—=1/h)" /n!: the expansion coefficient in Eq. (4.13) ;
(b) 1/2™: the ceffiencient in the interacting potential Eq. (4.18);
(c) ¢"=: the sign associated with the Wick contraction.
(d) (—1)?": each contraction corresponds to a —G. There are 2n contractions in total.

The labeled diagram approach is not efficient because the number of the labeled diagrams is
huge, and many distinct labeled diagrams have the same contribution. It is desirable to simplify the
approach.
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4.2.2 Unlabeled Feynman Diagrams

We seek for the simplification of eliminating all 7 labels and the directions of the vertices. This is
because distinct labelled diagrams with only these differences have the same contribution.

Symmetry factor S

» There are total 2"n! permutations of the time labels and vertex directions.

* Not all the permutations generate distinct diagram. For a given labeled diagram, there is
a subgroup of the permutations which just yield deformations.

» The symmetry factor S is the rank of the subgroup. The number of distinct labelled dia-
grams with respect to an unlabelled diagram is
2™n!
T
* As a result, one only needs to calculate distinct labelled diagrams with respect to an unla-
belled diagram only once, and then multiply the result with the above factor.
» Examples
— First order:

(4.22)

Q””Q <:> (4.23)
S =2 S =2

— Second order (connected):

GG b e

S=1 §=2 S=4

A Y (4.24)

- S = 2n for the first-order exchange graph and all direct ring diagrams:

<:> <>G Q QQ = —fTr [In(1 4 Cvgg/h)] (4.25)

« Simple rules for determining S:

— Successively remove one of the 2n propagator lines to obtain 2n self-energy diagrams.
— Not all the resulting self-energy diagrams are distinct. A diagram may occur many
times.

— The symmetry factor S is the number of times that a diagram occurs.
The proof of the rules will become obvious in §5.2.1.

Rules for unlabeled diagrams

1. Draw all distinct diagrams without the time labels and the directions of the vertices;

2. Multiply the factor
U™y 2" (/R
Sl x ("% o = 5 . (4.26)

4.2.3 Hugenholtz diagrams

We can make further simplification: eliminate the interaction lines by using (anti-)symmetrized
interaction matrix element:

o B o B
- =(Bhl)= )( = {af 0|0} 4.27)
) Y )

{aB oy} = (af|o]76) + ¢ (aB [0] 5v) (4.28)
Note the orders of o8 and «4 in the matrix element. The diagrams become
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 First order:
QC) Sp=1,n.=1 (4.29)

* Second order (connected):

GO £ w0

Sp=2,n.=0 Sp=2 n.=2

« Third order (connected):

@@Q@@ﬁ@@@

Sp=2n.=0 Sp=3.n.=0 Sp=1n.=1 (4.31)
SD—377’LG—3 SDZG,TL@:O
Symmetry factor
§=2"5p (4.32)

where Sp is the number of time-label permutations which only yield deformations, and n,, is
the number of equivalent pairs of propagator lines.

Equivalent pair refers to two propagator lines that begin at the same vertex, end at the same
vertex, and point in the same direction.
Simple rules for determining Sp:

* Successively remove one of non-equivalent propagator lines to generate a set of self-
energy diagrams. Note that the two propagator lines in an equivalent pair only needs
to be removed once.

* Sp is the number of times that a diagram occurs.
Number of closed loops n, is determined by:

» expanding a Hugenholtz diagram to (any) one of corresponding Feynman diagrams;

» writing down interacting matrix elements according to the rules of Feynman diagrams,
and upgrading them to symmetrized ones;

 counting the number of closed loops.
See NO Eq. (2.1224a, b) for an example.
Overall factor: (1/myncne
3 (4.33)
4.2.4 Frequency and momentum representation

Momentum/frequency representation For systems homogeneous in space/time, it is advantageous
to work in Momentum/frequency representation.

* The diagonal a-basis is the plane-wave basis
Pr (1) = ek, (4.39)

Le., a should be interpreted as k.
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* Interaction matrix element with respect to the plane-wave basis is

(Reaks |6] kegkes) — %5k1+k2,k3+k4@ (ky — k) . (4.35)
- Begause of the (anti-)periodicity, a time-dependent function can be expressed as a Fourier =~ (2.13.3.36)
series . '
f(r) = ] ; Jo, €77, (4.36) (222
where w,, is the Matsubara frequency. (217

— A Green’s function has the form G (» — »’, 7 — 7’), which is diagonal in the time-dependent
plane-wave basis:

1 . .
w _ —iwnT+ikr 4.37 (2.15)

¢k7 n (r’ T) \/We ) ( )

Grrr't)=G(r—r',7—7)= Z Z Ghon k't b (17) Gy, (17,7 (4.38)

WnWy,/ kk’
gkw,,“k’wn/ = g (ka wn) 6wn,wn/ 6k,k’7
hB ) N /
G (k,wn) = /dr/ drG(r—r',7— 1) gion (r=7) =ik (r=r") (4.39)
0
The free Green’s function in momentum-frequency representation is
1

Go (k,wy) = - (4.40) 22

i — (e — ) /1
 After applying internal time integrals, frequencies are also conserved at each vertex.

Diagram rules NO p. 94, 96

1. Assign momentum/frequency labels to each directed line in such a way that momenta/frequencies
are conserved at each vertex, and include a factor:

(JJyy - 1
= Go(k,wn) = 1= ey (4.41)

For propagators beginning and ending at the same vertex, include an additional factor
elwnn,

2. For each vertex include a factor:

ks k1 + ko — ks
k

>< = 0(ky — ks), (4.42)
1 ko

k3 ki +ky — k3

>.< — (ks — k) + C(ks — kg). (4.43)

k1 ko

Note that both the momenta and the frequencies are conserved at each vertex.
3. For each independent momentum/frequency, perform the integral and sum

1 dk
B ; / (2m)® D

4. Beside the overall factor, multiply an extra factor (h3V)", where n. is the number of
connected parts in the diagram.
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4.2.5 The linked cluster theorem
The grand potential is determined by the sum of all connected diagrams:

1 1
Q=——InZ=0y— = all connected graphs). (4.45)
5 0~ 3 > graphs)

Proof

* Replica approach

- Exploit the identity:

lim iZ" =InZ. (4.46)

n—0 dn

— Z™ can be obtained by calculating the partition function of a system with n replicating
fields. Different species of the replicating fields do not interact.

— For a graph with n, connected parts, each part has n choices of the replicating field species.
In total, there are n™ choices. As a result, the contribution of the graph is proportional to
ne.

— One expands Z" as a Taylor series of n, and In Z is the coefficient of the linear term.
Therefore, In 7 is the sum of all graphs with n. = 1, i.e., connected graphs.

« Standard approach (See NO Problem 2.10).

4.2.6 Green’s functions

The Green’s functions can be expressed as functional integrals:

g (a1T2, . apTp; 04Ty, . cal,Th) = (—1)" <T [&al (1) ... 0q, (Tn)&Ln (Tn) - -- dll (7'1)]>
(b TV OO (1) e () ()2, (7]

)
<e—% deV<w*<T),¢(T)>> 0. (447) 637

~ (-1

0
The evaluation of the Green’s function is similar to that for In Z:

* Only connected graphs contribute to the Green’s function. A connected diagram is a diagram
with all parts connected to external vertices.

» The symmetry factor S is always one. NO p. 102

Diagram Rules: For an order r graph:
;T
» Draw all distinct connected diagrams composed of n external outgoing propagators / ,
n external incoming propagators / , as well as r interaction vertices. There are

!/ !
QT
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n -+ 2r propagators in total.

2

N \

1

+ <>+ QQ+ ,®+;' O+ D4 (448)

/ \
/ \

2

* Assign the usual factors to vertices and propagators.

* Sum over all internal single-particle indices and integrate the r internal times over the
interval [0, ().

» Multiply the result by the factor )
<_711> cPene, (4.49)

where ny, is the number of closed propagator loops, and P is the permutation of out-going
particles with respect to incoming particles.

QIT] GRTy  ONT] QpTy  QAT] Ty OOT] Q5T

+.... (4.50)

Q171 2T2 Q171 272 Q171 2T2 Q171 2T2

Proper self energy The diagrams of the single-particle Green’s function has the structure:

= ++... (4.51)
-

2o@- O by 4 e 00 HO L s



1 1
G=Go+ ﬁgozgo + ﬁgozgozgo +.... (4.53)

1
= Go + 3G0%G (4.54)

Note that the products should be interpreted as matrix-products/convolutions.
The resulting equation is called the DySoN EQUATION. The solution of the equation

—1
G— (1 _ ;goz) Go. (4.55)

is an example of the re-summation.

4.3 Zero temperature formalism

For Fermion systems at zero temperature, it is possible to develop a real-time formalism. It is closely
analogous to the finite temperature imaginary-time formalism with modifications in

¢ redefining the time domain;

* replacing the average over the density matrix with the expectation value in a non-interacting
ground state.

It results in slight modifications to the rules of Feynman diagrams.
A Boson system will have the Bose-Einstein condensation at the zero temperature, i.e., it is a
symmetry breaking system. It needs a special treatment.

4.3.1 Ground state energy and Green’s function
We seek for analogous expressions of
» ground state energy
 Green’s function
Ground state energy
Basic idea: We exploit the relation
(1]t

%) =D (@0 Wy)[* 7m0 To (4.56)
0 n .
(I)O> n

—————— [(® | W) [* e H Fom W0 T, (4.57)
ImTy——oc0

where [®,,), W, (|¥,,), E,,) are the eigenstate and eigenenergy of the non-interacting Hamil-
tonian Hy (full Hamiltonian H), respectively. The relation holds when

* |®y) is not orthogonal to ¥y;
* |¥y) is non-degenerate.

Time-domain is redefined as C; of Fig. 4.2.

* Cg: t = —ir, 7 € [0, hp), is the choice of the finite temperature formalism.
* Cpit=(1—1in)tgwithn =07,tg € [-T0/2,Ty/2], is the choice of the zero-temperature
real-time formalism.

Ground state energy
ih  Z
Ey—Wy = lim — In —. (4.58)
0 0 To—(1—in)oo Tg 2y
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Figure 4.2: Time domains for defining Green’s functions.

Partition function We define the “partition function” as

zZ= <<1>0 e #HTo <1>0><<1>0 u<T2° €°> ‘@0> (4.59)

— [auwo | duwi)Lt(wf, %—) (Do | ) (11| Do) (4.60)
Ty Ty

_u< s 0,—2). (4.61)

To obtain the last line, annihilation operators should annihilate |®,) instead of the empty
state |0), so that (®o|i¢) = (¢;|Po) = 1. See Eq. (4.79) for the definition of the annihilation
operator with respect to |®y).

We have
Dy wexpl Sol* 9]~ 1 / anv (v ()W))l (462
:Zo<e_”-2%ldt (" <t>¢<t>>> | (463)
Hyp
where
Solwroul = [ Al (®) 0+ ) vie) ~ Ho (0", 0], (4.64
2= [ Dl )eksivr, (4.65)
(F (@ (1), (t0)) )y, = 5 [ DI 0] kS IE (07, ), (4.66)

with the boundary conditions

V* (To/2) = (—=Ty/2) = 0. (4.67)
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Green’s function

G (aity ... antp;alty .. altl) = (=i)"

n-n
To

-3 2T de V(™ (1),%(¢))
<e P Vo (81) - o, (1) ;;(t;)u-w;g(ta)>
lim o (4.68)
To—(1—in)oo < i 2 dtV(aT(t) (t))>
(&
Hy
Proof We just consider the single-particle Green’s function:
. To
=5 J Ty EVET()%()
e H o ()5, <t’1>>
—i_ lim - . (4.69)
Tomr(=imee < —§ [, AtV (@t <)>>
e -
Hop
4, (@ wa0)
| S Py At A (AT (0).a()
<<I>0 T |:e R iy (t1)a], (tll)] ‘I)0>
=—i lim . (4.70)
To—(1—in)oo <<I>0 ’ e—iHTo/h ’ ‘I>O>
<q)0 ‘ o—iHTo /20 [dgf)(h)&g,m(t’l)} o~ 1Ty /2R ‘ ‘I’0>
——i lim _—— (4.71)
To—s(1-in)oo <q>0 ‘ o—ilTo/h ‘1)0>
Dy | W P
— i lim Z< 0| W) (W | °>e—‘<El+Em—2E°>Tﬂ/2<\Ifl‘T[ M(ty)al (H” (t} } ‘\1/ >
To—(1—in)oo |<‘I)0 | \I/0>‘
(4.72)
- —i<\I/0 ‘T [ag}f)(t alt (¢ } (%> 4.73)

4.3.2 Diagram Rules

The finite temperature Feynman diagram rules can be adapted for the zero-temperature with the
substitutions:

* Time substitutions

/hﬁdra/i/; , hlﬁ%:%/;k;, hB — Tp. (4.74)
¢ The overall factor (_1/Ryncn B (i/Rym s
S S ’ '
* Green’s function
—Goa(T —7') = iGoa(t — t'), (4.76)
~Goa(wn) = 1Goa (W), 4.77)

where Gy is the real-time free Green’s function.
The expectation value of ground state energy can be obtained by
ik

Ey— Wy = lim T Z all connected diagrams. (4.78)

To—o0 0
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4.3.3 Free Fermion propagators

Particle-hole operators are introduced to deal with the issue that the electron annihilation opera-
tors do not annihilate |®y), i.e., a, |Po) # 0 for e, < p. Thisis because |®y) is not an empty state

but a filled Fermi sea. We introduce
Ba = C:l? Ca =t .
aa €a S ,LL

— )+ Z lea — p I;Léav

Ko=Hy— puN = Z(e

€a<p

« It satisfies the usual commutation rules of annihilation/creation operators.

« It annihilates the non-interacting ground state: b, |®,) = 0.
Generating functional for free Fermion propagator:
Gy [J*, J] = <ef dt[J (t)aa(t)+a;(t)Ja(t)}> :

Ho
5%y [J*, J]
iGo (at; o't = — ————2 "~ _
e (L (|
Free Fermion propagator
G 1%, =4 1T )9 1),
*(1)b b + gle)—1y
gD [, g = ] (e da@he@ b2l T e 7as5
o>l < >Ko a>p
G g, g = of AT OB O+ Ia )]\ _ S oy SO
0 [ ) ] H X H J
ea<p 0 ea<p
1 0 0 0]
—a 1 0 0
g | O et weq_jlolea—pl
0 —a . ’ AM
0 1 0
. O —a 1 |
e Foreq > p

iGo(aty; a'ty) = Saar {S(a)}

qr

e Fore, <pu

1 .
iGo(Cvtq; a’tr) = oo |:S(a):| = —5,10/6_ﬁ(eo‘_u)(tq_tr)e(tr — tq + O+)

rq
Note an extra minus sign due to the exchange of J* and J.
Complete form:

iGo(at;a/t') = P ACRDIC)) [0(
where ng, = 0(p — €4).
» Fourier transform:

t—t' —n)(1—ny)

eiwn

! — 5040/67%(6u7”)(t‘17t"')9(tq _ t'r _ 0+),

— 0t —t+n)na],

Goalw) = /dtGo(at a0)et =

1—n, Ne iw
- { — + — | e
w—(€a—p)/h+in  w—(ea—p)/h—
— Fourier transform of 6(¢)
d —iwt
ot =F [ =&
2miw £1in
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(4.79)

(4.80)

(4.81)

(4.82)

(4.83)
(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)
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4.4 Contour formalism H)§4.3
The contour ordered Green’s function can also be expressed as path integrals:: (3.38)

Gén) (a1t ... aptp; )ty . alth) =

(et Jo @V OV, (). b, (), (5) - 03 (1) )
<e—% Je dtwm(t),@(t>)>

(—i)m 0. (4.93)

0

Resulting Feynman diagram rules are the same as those for the zero-temperature real-time Green’s
function, except that the time is defined on the contour shown in Fig. 2.2.

Adiabatic assumption: We assume that the interaction vanishes at ¢t = —T,/2 — —o0, and is adi-
abatically turned on in C; and off in Cs,. As a result, contributions from the vertical segment
Cj vanish in the perturbative expansion. The assumption is plausible for (equilibrium or non-
equilibrium) steady state problems. However, it may not be valid for transient problems.

Langreth theorem expresses contour defined quantities in real-time ones. See Table. 4.1 for the
rules of translation. In deriving these relations, the contribution from the vertical segment Cj
of the contour is ignored, and all quantities are assumed to be in the Keldysh space.

Keldysh space A function A (¢,¢') belongs to the Keldysh space if it can be written as [26]85.5
At t) =A%) (t,t)) + 0 (t, 1) A™ (t, ') + 6 (', t) A<(t, 1)), (4.94)

where both ¢ and # are defined on the contour, A%(t), A>(t,t') and A<(t,t') have val-
ues independent of the branches of their time arguments, and § (¢,¢') and 6 (¢,¢') are
the §-function and Heaviside function for the contour, respectively. We note that the ¢-
function is non-zero only when the two times belong to the same branch of the contour,
ie,d (t5,¢F) =0.

The retarded and advanced components are defined by
At t) =AWt —t)+0(t —t') [A” (t,¥) — A< (t,1)], (4.95) (@59
ANt ) = A0S (t—t)) — 0 (' —t) [A~ (1) — A< (1, 1)] . (4.96) (260

Convolution If the two function A (¢,') and B (¢,t’) are in the Keldysh space, their convolu-
tion

C(tt) = / dt,1 A (t,t1) B (t1,t') (4.97)
C

is also in the Keldysh space.

Product Ifthe two function A (¢,¢') and B (¢, ¢') are in the Keldysh space, and their §-components
A? and B° are identically zero, their products

C(t,t") = A(t,t')B(t,t), (4.98)
D(t,t') = A(t,t")B(t',t) (4.99)

are also in the Keldysh space.

4.5 Summary

¢ To unify the imaginary time (finite temperature) formalism and the real-time (zero tempera-
ture) formalism, we introduce the symbol

(4.100)

—1 thermal Green’s function
L= )
i real time Green’s function
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Contour Real axis

C< = [,[A"B< + A<B?]
C> = [, [A"B> + 4> B*]

C:fCAB Cr :ftArBr
Ca:ftAaBa

D< :ft[ArBrC< —I—AYB<Ca—|—A<BaCa}

D> = ATB*C> +ArB>Oa+A>BaCa

D:fCABC ft[ Dr:ftArBrCr }

D& = ft A2 BaC?

C<(t, ') = A<(t,t')B<(t,t')

/ / / C>(t7t/) = A>(t,t/)B>(t,t/)
CU) = ALOBEE) e py = 4>(11)B (1,1) + A1) B=(1.V)
Co(t, 1) = A> (1, ¢) BA(t, ) + A2(t, ) B<(1,¥')

D<(t,t') = A<(t,¢')B> (1)

D>(t.#') = A>(t,¢')B<(', 1)

D (t,t') = A<(t,¢)B (', t) + A*(t, 1)
+ A% (t

D(t,t) = A(t,¢)B(t',t) X
DA t) = AS(t,t)B (', t) + A2(t,¢)

B=(t',1)
B<(t',1)

Table 4.1: Langreth rules of contour defined quantities. The integral C = [ AB is interpreted as
C(t,t'") = [dt1A(t,t1)B(t1,t'), and similarly for [ ABC. All quantities are assumed to be in the
Keldysh space and have vanishing §-components.

* The free Green’s function can be written as a unified form:
1Gou = elea—p)(r=7")/1h [(1+¢na)0(T —7) + (na(7' — 1)], (4.101)

where n,, is the occupation number of the state . For the real-time formalism, G, should be
interpreted as Gg, and 7 as t. In the frequency/momentum domain, the free Green’s function
has the form:

1

Go (k,wn) = - ; (4.102)
olken) = G e =/
1+ Cng Cng
Go(k,w) = — — —, (4.103)
olbw) = 5= (ek —p) /h+in  w—(ex —p) /h—in
where w,, is the Matsubara frequency:
= {3 (Bosons) (4.104)
" W (Fermions)
» The factor associated a vertex/propagator line is summarized in Table 4.2.
* An n-th order diagram has an overall factor:
L /reN™
S (ﬁ) e (4.105)
where S is the symmetry factor of the diagram, and n, is the number of Fermion loops in the
diagram.
* In the frequency/momentum representation, there is an extra factor
ToV (4.106)

for a connected closed diagram (for calculating the grand potential/ground state energy), where
To is the span of the (imaginary) time domain:

_— {hﬁ imaginary time (4.107)

To realtime
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] State/time \ Momentum/Frequency

p=
« wrk
Propagator / = Goa(T — ') / = Go(k,wn)

/

-
«Q wrk
Q == gOa(O_) - L_lcna Q = go(k,wn)ei“""
« 6 3 kl + k2 - kg
b Feynman } _ { = (aB 9] ~9) =v(k; — k3)
g o 5 } <
« 8 ks l<:1 +ha— k3
Hugenholtz X ={aB |0y} = >,< —
8l A 1) A ky oy
(aB 0] vd) + ¢ (apf |0] ) v(ky — kg)—‘rCU(kz—k?,)
% T#0 2 th dr hB > | & (27r)d
2 T=0 >a f_TO o dt f f (27r)d

Table 4.2: Diagram rules. For the zero-temperature formalism, G, should be interpreted as Gg, wy,
as continuous w, and 7 as t.

The grand potential/ground state energy can be obtained by:

Q-0 }_Lh

E_E =T Z all connected diagrams. (4.108)
— E, 5

« For evaluating Green’s functions, an extra factor ¢¥ should be incorporated, where P is the
permutation of out-going particle lines with respect to incoming particle lines.

*» A useful formula for summing the Matsubara frequency:

IWnV] Cenx

hﬁzlwn—x T enfr ¢

forn > 0. (4.109)

* Determine the symmetry factor:
Feynman diagram: generate 2n self-energy diagrams by successively removing one of prop-
agator lines, and count the number of times that a self-energy diagram occurs.

Hugenholtz diagram: S = 2"<Sp, where n, is the number of the equivalent pairs of the prop-
agator lines, Sp is number of times that a self-energy diagram occurs. The self-energy
diagrams are generated by successively removing one of non-equivalent propagator lines.

Green’s function: S = 1 for Feynman diagrams and Sp = 1 for Hugenholtz diagrams.

Problems

1. Verify the symmetry factors shown in Eq. (4.24).

2. Determine the expressions of the diagrams shown in Eq. (4.29) and (4.30) in the momentum-
frequency domain. How are the second order diagrams corresponded to the unlabeled dia-
grams shown in Eq. (4.24)?

3. Determine the sum of the direct ring diagrams Eq. (4.25) in the frequency/momentum repre-
sentation for a homogeneous system.
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4. Develop a set of diagram rules for the electron-phonon coupling Eq. (1.83). Assume that the
phonon subsystem has the non-interaction Hamiltonian

HE™ =" hwatléq. (4.110)
q

Hints:

(a) the EPC Hamiltonian can be rewritten as the form (M* , = M)
. 1 o
Flapn = 3" My, i (cq + ciq) . 4.111)
kq

(b) One may adopt one of two alternative approaches: (i) Treat H._,, as V, and repeat the
derivations of the perturbative expansions; (ii) Try to complete the functional integrals
over the phonon fields, and obtain an expression analog to the ordinary two-body inter-
action.

5. The electron self-energy of an electron-phonon coupled system can be written as
Spn(kyt —t) =1 |Mg|* G(k — q.t —)D(q,t — '), (4.112)
q

where G is the free-electron Green’s function and D is proportional to the density correlation
function (see Problem 3, §2), and the time is defined on the contour.

(a) Determine the real-time form of the self-energy ¥7, (k,t — ¢') by applying the Langreth
theorem.

(b) Relate G and D with their respective spectral functions, and obtain an expression for
XL (k,w).
ph\™»
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Chapter 5

Effective action theory and energy
functionals

In the effective action theory, we introduce an energy (grand potential) functional of the Green’s
function. Within the framework, determining the Green’s function becomes the problem of finding
the stationary point of the functional. In principle, one can determine the Green’s function exactly
as long as we know the exact form of the functional. In the real world, however, one has to rely on
approximations:

» Perturbative construction

— self-consistent re-summation of diagrams (conserving approximation)
— integral equations (Dyson equation and GW approximation)

» Empirical approaches for limiting cases

- Landau-Fermi liquid theory
— Density functional theory
— Dynamic mean-field theory (DMFT)

We will present the formalism in terms of the thermal Green’s function. By using the notations
introduced in §4.5, the formalism can also be applied to the real-time Green’s function (and the
contour Green’s function).

5.1 Effective action

The effective action is defined as follows:

1. Introduce an external source coupling to the system:
e 18] =17 Y [ dridravi (r)u(ra)us(m, ). 5.1
ap

The particular choice of the external source will give rise to a functional of the Green’s function
and two-particle irreducible vertices. Depending on physical circumstances interested in, other
choices are also possible:

Linear source

S =123 / dr [T ()b (7) + 7 (7) (7)) (52)

For Fermions, J(7) is a Grassmann function. This will give rise to a functional of (¢,,) and
one-particle irreducible vertices.
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Pairing source
Sext, =172 Z/dﬁde [0 (1) 5(12) Aap(T1,72) + C.C (5.3)
af

The source could emerge in a superconducting system. It will give rise to a functional of
the abnormal Green’s function

F(ar,d7)=— <T [dfo) (1) dg,{) (T/)} > . (5.4)

Mixed source Different kinds of the sources can be mixed. For instance, to describe a su-
perconducting system, one needs to introduce both the ordinary source and the pairing
source. A theory incorporating both the linear source and the bilinear source can be
found in Ref. [6].

2. Determine the partition function in the presence of the external source:

2061 = [ Dl wlexp [ (5 + S
1
=7 <eXp = /dTldTQ Zw,’;(ﬁ)d)g(m)éaﬂ(ﬁ,m) >, (5.5)
aff

where we define the average as

(F @) = [ D) F @ ven (55). 56)

Generating functional

A 1
g1 =21 - <exp 5 [ andr DR s()es > (5.7)
3. Determine the grand potential or the connected generating functional:
Wigl =In¥[¢] + C = -5 (Q2[g] — Do), (5.8)

where C =InZ — In Z,, ! and Qq (Z,) is the grand potential (partition function) of the system
at the non-interacting limit.

4. The Green’s functions can be generated by the generating functional by

G (o, ... apos a7, . Al Th) = (CR)™ ; 0" [9] - (5.9)
6¢a’10zl (Tla 71) cee 59260;()/” (Tna Tn) -0
The connected generating functional generates the connected Green’s functions *:
"W [¢]
G (anti,...anmpidiTl, ... 7)) = (Ch)™ (5.10)
c ( 171 11 n ) ( ) 6¢a’1a1 (7_{77_1)“.(%5&;1(1” (Tr/LaTn) or0
The cumulant expansion leads to
o  ahTh o ahTh o  ahTh
G =¢ + L. ... (5.11)
17Ty QT2 17Ty QT2 17Ty QT2

IThe particular choice of the constant is to accommodate with the construction of the Luttinger-Ward functional shown
in §5.2.2.

ZNote that the connected Green’s function defined here is different from that defined in NO Eq. (2.154) by using linear
sources.
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G? (12;12) = ¢{? (12;1'2") + G(11")G(22"), (5.12)
where G(11') = g (1;1’), and the arguments are abbreviated as numbers: 1 = a;71, 1’ = o/ 7.
. We define the conjugate field with respect to ¢ as

N e SW 9]
which is nothing but the single-particle Green’s function in the presence of the external source
¢. The relation map ¢ to G[¢].

. We define the effective action (Baym-Kadanoff functional) by applying the Legendre trans-
formation:

rig=- {W 9~ T (1’1)} = Wlgl+ T [gg (5.14)
C 11 s
=-Wlol+ 4 Z/O Ard7’ Gaar (7,7 ) Para (7', T) (5.15)

In defining the functional, we assume that the map ¢ — G[¢] defined by Eq. (5.13) is invertible,
i.e, we have a map G — ¢[G].

Why?
« It assigns a grand-potential/free energy to the physical state/order parameter of the system,
and gives rise to a variational principle.
* It has better analytic properties than W{¢] and thus be preferable to approximate.
« It provides a unified foundation for constructing various approximations consistently.
* One may devise non-perturbative or empirical approaches for constructing the functional.
. With the functional, we have:
LG ¢
5G(1'1)  h
In the absence of the external source, it yields the variational principle:

¢ (11'). (5.16)

o' [G] = 0, (5.17)
1. e, the physical Green’s function is the stationary point of the effective action .
. We introduce the Luttinger-Ward functional ® [G] to characterize the effect of the interaction.
It is defined by the decomposition
I'[G] =To[G] — @ [d], (5.18)
where I'y [G] is the effective action of a noninteracting system.

Free effective action for a non-interacting system:

Wolg] = —(Tr [In (-G ™) —In (=G5 )] = ¢Tr [In (G5 'G)], (5.19)
-1 _ 0 iLO — K
Go =—5. "7 > (5.20)
_1__2_il0+¢—/i_ 19
P o % T 621

where G, and G are the Green’s functions in the absence and presence of the external
source ¢, respectively, and hy is the single-particle operator defining Hj, (e.g., — (k2 /2m)V?).
Equation (5.21) also defines a map from ¢ to G: ¢[G] = h(G; ' —G~1). By inserting the
relation into Eq. (5.14), we obtain the non-interacting effective action functional:

(To[G) = —Tr [InG; 'G] +Tr [Gy'G —I]. (5.22)
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Energy functional is proportional to the effective action functional

1
QG - Qo = BF ¢ {T&r InGy'G] —Tr[Gy'G — 1]} — 52 4 (5.23)
_ _ 1
- %ZZ{IH% (k,wn) G (kown) = Gy ' (Kywn) G (Rywn) + 1} — 5209).
k  wn
(5.24)
At the zero temperature, the ground state energy can be similarly defined as a functional
of the real-time Green’s function: (4.78)
ElG) - Wo= T [nGy 0] - T [65'e — 1]} + Laq) (5.25)
To To
1h§2/—{1n )G(hw)]—Gg (k,w)G(k,w)—l—l}—i—ﬂ(I)[G],
Ty
(5.26)
where W, is the ground state energy of the system at the free limit. GVA13
5.2 Irreducible diagrams and integral equations Nosz4
Based on the functional, one can derive a set of exact self-consistent integral equations. The Luttinger-
Ward functional can be constructed approximately by choosing a set of diagrams. Itleads to practical
calculation schemes such as the GW approximation.
Vertex functions are defined by
"' [g]
(n) RPN Iy
I (@, anas b, 00m) = O S G o () oo (5.27)
Based on the analyses of the vertex functions in successive orders. one may derive a set of
self-consistent integral equations.
5.2.1 Self-energy and Dyson’s equation
In the absence of the external source,
o' [g]
(1) — _ (5.17)
II ¢ 5o 0. (5.28)
where G = G,y is implied. With the decomposition Eq. (5.18), we have
oI [4] - - 59 [d]
(1) N — — 1 AN 1 no_ _
) = Gy Go '] (1) = [g71] (11) Sgam) = (5.29)
where we make use of the matrix derivative identity [23149)
6TrinG  dln(detG) ., ,
G~ SGD) 671 (11"). (5.30)
Proper self energy functional is defined to be
zgIar) _ . 6eg]
p = CSeay (5.31)
Dyson equation:
g7 =[] - =0 ,[;Lg]’ (5.32) 453
1 1
G=Go+ ﬁgoxgo + ﬁgoxgozgo +.... (5.33)
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++... (5.34)
€

Diagrams of the proper self-energy are one-particle irreducible, i.e., they cannot be separated into
two parts by cutting a particle line:

oo b I Aol oo to,

Skeleton diagrams are diagrams that cannot be generated from lower order diagrams by inserting
self-energy blobs in particle lines: (a—-d) are skeleton diagrams, (e-h) are not.

« Alternative definition: all two-particle irreducible diagrams, i.e., the diagrams which can-
not be separated by cutting two particle lines.

» With skeleton diagrams, we can construct a self~consistent equation for ¥ (or G):

\
\
1

Doy 530

\

where the bold lines represent the Green’s function G (instead of Gy).

5.2.2 Perturbative construction of the Luttinger-Ward functional

The diagrams of the Luttinger-Ward functional can be constructed from the self-energy skeleton
diagrams Eq. (5.36) by applying Eq. (5.31). They are closed, bold, two-particle irreducible (skeleton)

diagrams:
<I>[Q]=Oo+<:>+<> <>+“\/v\/,,+... (5.37)

* Derivative with respect to G is to remove successively one of the particle propagators and
append a factor ¢. The latter is due to the fact that removing one propagator will reduce n, by
one. It should give rise to the skeleton diagrams of the self-energy Eq. (5.36).

* Rules for unlabeled Feynman diagrams should be applied. * Note that the symmetry factors S
is automatically cancelled when applying the derivative which generates S copies for each of
distinct self-energy diagrams.

» From Eq. (5.31), @ [G] is determined only up to a constant independent of G. By combining GV
(A13.9, A13.14), one can show that the constant is independent of the strength of the interac-
tion. Therefore, we can set the constant to zero.

3The symmetry factor suggested by Luttinger and Ward is S = 2n [17] (see also GV §6.3.3). This is not true for high order

diagrams with n > 2, for instance,
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Conserving approximation derives the self-energy and high order vertices from an approximated
Luttinger-Ward functional via derivatives. The approximation will be automatically consistent
with conservation laws on particle number, momentum, and energy [3].

GW approximation approximates the Luttinger-Ward functional with a subset of diagrams:

@Gw[g}:O,,OJr <:>+<><>+<}O +... (5.38)

¢

-O--O- %ﬂ {m (1 — thgg)] . (5.39)

Besides the Hartree (first) and Fock (second) terms, they include direct ring diagrams which
are the most diverging diagrams of the perturbative expansion for a system with the Coulomb
interaction.

5.2.3 Second order vertex function

By applying Eq. (5.27) and (5.29), we have

52® (G
5G(1'1)8G(2'2)°

2,2y = T g1 1) [ 1) — ¢

3] (5.40)

where the first term is contributed by —6G—! (11’) /6G (2'2), and we make use the matrix derivative
identity
0[g~'] ()
8G(2'2)

Irreducible electron-hole interaction We define the irreducible interaction I in the direct particle-
hole channel:

=—[g7'](12)[g7'] (21). (5.41)

Cen ("L 82®[G] ¢ox(11)
(1217 = (ﬁ) 6G(1'1)6G(2'2) — © 6G(2'2) "

It includes all scattering diagrams that are two-particle irreducible in the direct particle-hole

(5.42)

channel:
/
1 2/ 1‘/2 1 2/
1 o A\ o --
I(12;1'2') = - +¢ +¢ +
1/} {2 R 22 AN
1 vog 1
1 2/
1 2 12 N g 1 2
< v | \T‘/—/}
+ 1) +¢ | +¢ /“ +¢ I +... (5.43)
> y 5 T
1 2 1 2 1 2

It can be interpreted as the effective interaction between a particle and a hole.

Two particle Dyson Equation We have the identity

rony _ 0G(11) 10G(11") 6(3'3)
5(12)6(1'2") = 5627 _/d3d3 50(33) 5G(22)" (5.44)
_2 [ . Wl §°T [d]
= / dsds 5¢(3'3)0¢(1'1) §G(22/)6G(33')’ (5.45)
= / d3d3’ @ (13;1'3") 1@ (3'2',32) . (5.46)
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Combining it with Eq. (5.40), we have

P (12;12") = ¢G(12))G(21") + %g / d3d3'd4d4’G(? (13;1'3)1(3'4;34)G(24))G(42").  (5.47)

2/
1 2/ 1
1 /
1 G 2
1 2 1
2
Scattering amplitude 7 between a pair of particle and hole is defined by *:
1 2/
1 2/
—¢ 1 +@e? + L (5.49) NO(2.188a)
1 G2 h
1 2
1 2

Bethe-Salpeter equation in the particle-hole channel relates the scattering amplitude with the ir-
reducible interaction I:

1 y 1 o 1 o
L
Ezz _ EZZ ric Kié{ . (5.50)
v SR 2 I 2
T(12,1'2) = I (12;1'2') + %(/d3d3’d4d4’7'(13; 1'3)G (4'3)G (3'4) I (42:4'2').  (5.51)

5.2.4 Higher order equations

Higher order equations can be obtained by successively applying the derivative §/d¢ to Eq. (5.47)
or (5.48). Useful identities:

1
Ch(sii) :gén+1)’ Chégb(él’l) .= L (5.52) G113
v
1
562;) = (") 4 g@), Ch&zﬁ(él’l) = . (5.53) (542)
1

where 1) = (./h)~16"®[G]/6G(1'1) ... §G(n'n) denotes the n-body effective interaction.

4Note that 7 is denoted as T in many books. It is actually the T-matrix of two-particle scattering.
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5.2.5 Keldysh Formulation

For the case that the real-time formalism is desirable, the contour formalism should be employed.
The Dyson equation Eq. (5.32) can be generalized for the contour Green’s function:

1
Gc =Geo + ﬁGcchGc- (5.54)

Note that one should interpret all quantities as matrices, and the multiplications as matrix multipli-
cations/convolutions.

By applying the Langreth rules, the equation can be expressed in terms of the real-time Green’s
functions:

Retarded/Advanced Green’s function

r/a 1 r/a
G =Ga* + ﬁGO/ sr/agr/a, (5.55)
1 —1
G/ = <1 - hGg/ay/ﬂ) G, (5.56)
Less Green’s function
< rE< a 1 T\ < 1 a/ya

It has a non-trivial form.

Poof:

* By applying the Langreth rules:

»r < e
* Solve the equation:
1 -t < ya
G< = (I — hGBEr> <G§ + GBYGa + GéhGa> (5.59)
—Gr2<Ga+ I— 16“2? 71G< I+Z&Ga (5.60)
=C 70 o\'TRY) '
* We have
11r1r_1 r e\ —1 rlrrr r\—1 1rr
I— ﬁGOZ =G (Gy)” =(Gi+ ﬁG SGH)(GYH T =1+ %G 3. (5.61)

After inserting the identity to Eq. (5.60), we reach the final form.

5.2.6 Other sources

Linear source can also be used to define a set of vertex functions. It results in a set of tree diagrams
and corresponding equations that relate Green’s functions and vertex functions. This is partic-
ularly useful for the renormalization theory in which divergences can be isolated in a small
number of low order vertex functions. See NO§2.4.

Pairing field A and A* can also be included as external sources. The resulting Bethe-Salpeter equa-
tion will be in the particle-particle channel. The generalization is necessary for treating super-
conducting systems.
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GV§8

5.3 Landau Fermi-liquid theory

Motivation: Physical properties of metals/Helium III liquid suggest that electrons/Helium III atoms
behave like independent particles, even though the interaction in these systems are rather
strong.

Basic idea: a low lying excited state of an interacting Fermion system can be constructed by:

1. preparing a low lying excited state of non-interacting ideal Fermi-liquid (e.g., adding an
electron/hole above/below the Fermi level);

2. switching on the interaction suitably slowly: it should be switched on before the state is
totally damped -It is possible because an electron/hole near the Fermi surface damps very
slowly: for 3D systems, the damping rate is proportional to (k — kr)2.

Energy functional: The energy of an interacting Fermion system is a functional of the occupation
number N, of the non-interacting ideal system:

 According to Eq. (5.26), the energy is a functional of G.

* It is assumed that G can be determined by the perturbative expansion shown in §4.3.

* The perturbative expansion in §4.3 is constructed from |®,) -the non-interacting ground
state, i.e,, a filled Fermi sea. To establish the Landau Fermi-liquid theory, one needs to as-
sume that the expansion is also valid for low excited states of the non-interacting system,
Le, |®g) = |Py).

» The Green’s function Gy for a low excited state can be written as

1 — N n Ni

w— (e —p)/h+in  w— (e —p)/h—in’

where {N} is the momentum occupation number of a low excited state of the non-interacting

system. It is not the momentum occupation number ng = <&Ldk> of the interacting sys-
tem.

* G is a functional of Gy, provided that the perturbative expansion converges. As a result,
the energy is a functional of V.

Go(k,w) = (5.62) 20

5.3.1 Phenomenological approach GVs8.3

For small deviation from the ground state configuration /\/,283 = 0 (kr — k), we can always expand
the energy functional to the second order of 6NV, = Nko — N,i(;):

1
E [N} = EO + Z gkg(Sng- + 5 Z ka,k’o”(SNko'(SNk’o"- (563)
ko ko,k'c’

Effective mass: &, isthe quasiparticle energy, the energy required to add/remove a particle into/from
the ground state of the system. Near the Fermi surface:

Ero = 1+ hi(k — kr), (5.64)
where v}, is the effective Fermi velocity, and defines the effective mass by:
. hk
v = m—F (5.65)

Note that the effective mass could be very different from the bare electron mass.

Quasiparticle density of states is modified by the effective mass:

N*(0) = —N(0). (5.66)
It can be determined by measuring the low-temperature heat capacity: Gv88.3.2

7T2
c,(T) = EN*(O)k%T. (5.67)
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Proof

1. One first needs to generalize the theory to the finite temperature. The entropy of the
non-interacting system is

S=—kp Y WioINio + (1 = Nigo) In (1 = Nio )], (5.68)
ko

which is not changed when adiabatically switching on the interaction. By minimizing the
grand potential

QN =EWN] =TS — 1> Nio, (5.69)
ko
we obtain .
Nio = {exp [6 (é,w - M)] + 1} . (5.70)
Note that it is determined by &k instead of &, and & has the correction due to 6Ng, =
Nio — N2,
2. One can show that the interaction correction to the total energy is of the order of 7*:
EN|~Eo+ Y ExoONiy + O (T*). (5.71)
ko

It is thus negligible.

3. Thus, when determining the heat capacity, the system can be treated as if it is non-interacting.

Local quasiparticle energy isthe energy required to add/remove a particle in the presence of other

eXCitationS
50* *ga' g o ’0’6 ‘o’ 5.72
k 5./\/- k — fk k A/.k: ( )

The energy of a quasiparticle is modified by its interaction with quasi-particles.

Landau Fermi-liquid parameters: For isotropic systems, frs o = foo’ (cosf), where 6 is the angle
between k and &’ (|k| = |k’| = kr). The system can be characterized by a set of parameters:

VN*(0)

1
Frr = 2 [ o (i) £ @) o), 573)
-1

where P;(z) is the Legendre function.

Compressibility
L _ 20n _ pke Op
K "oy 3 okp
and ) )
01 = Enpsohpo — Enpio = VihOkp + Y frowroONwor, (5.74)
k'c’
where 6Nk, = 1 in a thin shell between kr and kp + dkp. It results in:
K m*/m
?0 =17 B (5.75)

The compressibility can be determined by measuring the sound velocity v; = 1/vVnmK.

Spin susceptibility
X _ m'/m
= = . 5.76
Xo 1+ F§ ( )
Mass renormalization for a system with the translational symmetry:
UL (5.77)
m
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Proof:

* Look at the system from a reference frame in which the system has an infinitesimal ve-
locity ». The quasiparticle now has the energy

ko + hv - k. (5.78)
« It can also be regarded as a system with the Fermi-sea shifted by a wave vector mwv/h.
The change of the quasi-particle energy includes:
1. The change of &, for k — k + mwv/h;
2. The shifted distribution induces é Vg, which gives rise to the interaction correction.
» Equate the changes of the quasiparticle energy from the two different considerations.

5.3.2 Microscopic underpinning

GV58.5

Spectral function A quasi-particle in an interacting system does not have a definite energy-momentum

relation. Instead, it is described by the spectral function
Im>? (k,w)
[hw — e, — ReXx (k,w)]? + [Im3x (K, w)]?’

which can be interpreted as the probability that the energy of the system changes hw after
adding an electron/hole with a momentum hk:

Ay (k,w) = —2ImG" (k,w) = —2h (5.79)

Ag(k,w) = AZ (k,w) + AS (k,w) (5.80)

AZ (k,w) = iG szs( E ) | (m, N+1‘aka n, N>‘ (5.81)
—BE,\ _ )

AS (k,w) = -GS (k,w) szs( h )e BEn |(m, N — 1| éago |n, N)|*  (5.82)

For a non-interacting system, it is reduced to a Dirac function.

Quasiparticle energy is determined by the equation

Eko = €xo + ReX, <k “’é") (5.83)
Coherent peak: the spectral function has a sharp peak (coherent peak) near the quasiparticle en-
ergy:
1
Aa (ka UJ) = Zk‘a Tho ) + Aincoh. (k7 LU), (584)
(o= %)+ (o)

I 1 OReX. (k,w)
Zka B ﬁ aw hw=Ek ’ (585)
ho_ Zio ImY" (k, Eky /h)| - (5.86)

2Tko

Zyo 1s called the quasi-particle weight. Near the Fermi surface, we have

ImX} (k, &;;)  (Eko — p)° (5.87)
Fermi surface: A Fermi-liquid has the property that there exists a Fermi surface defined by the
equations:
r H
= €kp, — ReXy (kF(,, ﬁ) =0, (5.88)
r LA
Imy, (kFU, h) ~0. (5.89)
The equations define a d — 1 surface in the momentum space as well as the Fermi energy
(C;F = u
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Figure 5.1: Momentum occupation number for an electron gas with r, = 2 (solid line) and ry = 5
(dashed line).

Luttinger theorem: The volume enclosed by the Fermi surface (Fermi sea) coincides with that of a
non-interaction Fermi liquid of the same density °.

Effective mass:

2
Wkrs _ dbno , (5.90)
m* dk =k,
m m  OReXL (k,u/h)
=7 1 g . 91
m* kro ( + h2kFa ok . (5 9 )
Momentum occupation number ng, has a discontinuous jump at k = kr by an amount Z,.,. See
Fig. 5.1.
Proof: Near the Fermi surface, ImX* — 0, we have
Yr(k
A, (k,w) — 270 [w - ‘Mh(f(”)} + Aneon. (k, w) (5.92)
gko
=217k, 0 |w— - + Aincon. (k,w) (5.93)
The momentum occupation number is determined by
[ dw wI Qo
Nko = 1/ EG” (k,w) = [m %A" (k,w). (5.94)

For two k’s located in (&, < w) and out (&, > u) of the Fermi-sea, the difference of
Aincon. (k, w) 1s negligible, and the difference of the integral is Zg,..-

Landau energy functional: The ground state energy functional Eq. (5.26) can be rewritten as

E[Ng] — Eo :ihZ/g—: {m

where X is a functional of G, and G = G[Gy] is regarded as a functional of Gy. Gy is determined
by N through Eq. (5.62).
5The Luttinger theorem is valid only for systems with the time-reversal symmetry. For magnetic systems with the spin-

orbit coupling, there exists a Berry curvature correction to the measure of the phase space. The Fermi sea volume will depend
on the external magnetic field, and the theorem breaks down [29].

1- 260 (kw) s (k,w)} + 5 e w) G kw)| + Lo, (5.95)
h h Ty
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Quasiparticle energy We can prove that the quasiparticle energy defined in Eq. (5.83) is indeed
the quasiparticle energy appeared in the energy functional Eq. (5.63):

» We consider NV is changed from 0 to 1 for a k near the Fermi surface. It induces a change
of the Green’s function Gy (k,w)

1 1
hwfek+in—>ﬁwfekfin' (5.96)
* The change of the energy:
6E:6E0—h2/00 s 1= L6 (6, 0) S e, w) (5.97)
oo 27 h ’ ’
e [ g e 99
oo T hw — e —in

where the variation is only acted on Gy because 6E[G]/6G = 0.
* Near the Fermi surface, ¥ is approximately real [Eq. (5.87)]. Note that ImIn(z — in) =

—m6(—x), we have
5k €k o
9(h—w> —9(h—w)] — & (5.99)

Interaction parameters [, Can be determined by inspecting how the local quasi-particle en-
ergy changes when Ny, is varied:

5E:6k+h/ dw

Evo = Eno + 6o = €ko + Do (k 5’““;55’“’) + 6%, (k, Exo /1) - (5.100)
* [tleads to:
68k = Zia0Sy (k, Exo /) . (5.101)

» By comparing to Eq. (5.72), we obtain

0%, (k,Eko /1)
et = g 2o\ /1) 5.102
frok k N ( )

» The interaction parameters can be related to the scattering amplitude Eqg. (5.50) by

1
fka,k’o" = ngUZk’U’T(11/711/) (5103)

with 1 = (k, Eky,0) and 1/ = (k', Exror, o). See GV§8.5.5 for a derivation °.

5.4 Generalizations

* In principle, as long as we know the energy functional (e.g., ®[G]), we solve the many-particle
problem.

* Unfortunately, there is no easy way to determine the exact form of the functional. Even worse,
its existence is not always guaranteed [14]:

— The Legendre transformation Eq. (5.14) is well defined only when the map from ¢ to G is
invertible.

— The physical solutions of the stationary condition 6I'[G] = 0 may be saddle points and not
extrema [5].

« It is often more useful and practical to define functionals which are less general.

6There are a number of sign errors in relevant equations of GV: (8.170), the first term of (8.172), the second term of (8.173)
and (8.175). There is also a factor 1/ for the second term of (8.175). (8.175) is actually the Bethe-Salpeter equation (5.50).
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Density functional theory: one can introduce a bilinear source

S = /deTﬁ(TT)(;S(T) = hﬁ/drﬁ(r)gb(r). (5.104)
After the Legendre transformation, we can define an energy function of the local density
p(r) = (p(r)).
* Kohn-Hohenberg theorem: the map from ¢ to p is invertible.
» The functional can be constructed empirically.

Dynamic mean field theory: Fora tight-binding (lattice) model, one can introduce a bilinear source [13]
s=%" / drdr, (F)ior (7)) Moo (7 — 7). (5.105)

It results in an energy functional of Gioc (7 — 7") = — (Vi (7)¥5,, (7).

» The functional can be obtained by solving the Anderson impurity model Eq. (1.92) in an
effective medium.

 All local correlation effects are included in the approach.

Problems

1. Derive Eq. (5.36) and (5.43) by starting from the Luttinger-Ward functional Eq. (5.37) and ap-
plying the definitions Eq. (5.31) and (5.42).

2. Determine the self-energy and the irreducible interaction with respect to ®qw|[d] (Eq. 5.38).
3. Determine the Bethe-Salpeter equation Eq. (5.50) in the frequency/momentum domain.

4. Derive the spin susceptibility formula Eq. (5.76).
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Chapter 6

Theory of electron liquid

FW§12

6.1 Energy

The second quantized Hamiltonian of a homogeneous electron gas (jellium model) reads:

Rk 4
- Z akaakg + 27 Z Z ak:-‘rqo p qcr’apo"aka (61) (1.82)
q;éO ko,po’

Dimensionless form: we choose the unit of the length as the average distance between electrons

To-
4 4

Dimensionless density parameter

70
Ts = ;7 (63)

0

where ag = h?/me? is the Bohr radius.
The dimensionless form of the Hamiltonian is

— k’2 ~ 4T A-|- A 6 4
- a ,',.2 Z a’ko'ako' Z Z 2 k+qo’ p qo—’aPO'/a'ktT ) ( . )

q;ﬁO ko pcr’

where the volume and momenta have been scaled by the new length unit: V — V/r§ = 47N/3,
k:ap7 q— kTOa PTo,gro.

Counter-intuitively, the high-density limit r, — 0 is the non-interacting limit.
6.1.1 Hartree-Fock approximation

We calculate the expectation value of the Hamiltonian with respect to the ground state of an ideal
non-interacting electron gas, i. e, a filled Fermi sea with

1/3
kJFTO = l, o = (4> . (65)
« 9

Kinetic energy: we have nj_ <a£oakg> = 0(kr — |k|), and

2 1/c 4 2 N
Zkzn?w =2 X LV/ mh dkk;Q _ 3 Ry. (6.6)
e 0

2a072 - 2aq12 (2m)3 Sa?r2

where Ry = €2?/2a0. The average electron kinetic energy is

Ey 221
€0 = F ~ 7"2, Ry (67)

S
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Figure 6.1: Approximate ground state energy of an electron gas. Black: Hartree-Fock approximation
Eq. (6.7)+Eq. (6.11); Blue: Eq. (6.31).

Exchange energy: to calculate the expectation value of the second term, we apply Wick’s theorem

T W ot - ot - ot
<ak+40ap*qa’ap"’ak”>o o <a’“+q”ak”>o <a1’*q0’a1"’,>o - <ak+qaa”"/>o <aP*q0’a’w>0 (6.:8)

- 5110”20”20' - 6q,P—k500'nzan%+qya' (6.9)
We have

e2 11 4m 3
E,=——01—— — 0 n? = — NR 6.10
a0 14 V Z p Z NkoMk+q,0 oo ¥, (6.10)

q#0 ko
E 0.916

= — & R 6.11
¢ N T ( )

Perturbative approach: the exchange energy can also be obtained from the diagram

k,w .
’ w (D) 1y [ dk
= _— —_ —1
: 1W<h> A ,/(2ﬂ)3v(q)/(2ﬂ)3
k+q,u o9
dw - dw’ -
, wn ! 1w7]' .
X(sacr /27TG0(’€,(U)6 /27’( Go(k+q,w)e (612)

Note that [ 942Gy (k,w)e*" = in.

Self energy

—(O=0, (6.13)

\ d d .
S (k,w) = h{; = 500/1/(27:_1>3v(q)/2;G0(k+q,1/)61”" (6.14)
dqg ekp k
o0 / W”(Q)ngm =—>5 <kp> ; (6.15)
_ .2
S(m):—(1+1 z h#”). (6.16)
T 1—=z

The singularity at k = k results in a vanishing effective mass, which is actually unphysical.
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6.1.2 High order contributions

The second order diagrams of the self energy are evaluated in MH §5.1.5-5.1.7:

A A { <> 6.17)

(@ () (¢
* (a) is convergent and has an on-shell value independent of the density.

* (b) can be interpreted as a self-energy correction to the propagator line of Eq. (6.14). The
correction is w-independent. It has no effect because of Luttinger’s theorem.

h{ <><k,w>=iamz [ [ wlanGolk a0 +r) 619

N /% s oo, (6.19)

* (¢) diverges:

where xo(g, ) denotes the polarization bubble:

A
i dk dw
XO(qvl/) — k"'qok _hzéga,/w %Go(k‘i‘q,(JJ‘l’l/)Go(k,w). (620)
A

Higher order diagrams with more bubbles (e.g., <>, __ ) diverge even worse.

ffffff 0

Re-summation The divergence can be removed by summing all direct ring diagrams:

SRPA (. w) = h {‘;+{<>+ <> T (6.21)
L LS,

B i/ (2(173 / @ {1+ v@xola.») + @xola. I + -+ } Golk + g0 + )

2T
(6.22)
_ [ dg [dv  u(g)
=i | e | o g Gl g ) (629
d d
i/(27:_1>3 %W(q,y)Go(k+q,w+y), (6.24)

where W(q,v) = v(q)/erpa(q, v) can be interpreted as a screened e-e interaction by the dielec-
tric function

erpralq,v) =1 —v(q)xo(q, V). (6.25)
The effective mass becomes finite.

Ground state energy The GW approximation for the Luttinger-Ward functional

vy ) 00<>+... 620

“yn / dg / 10 {1 - w(@)xolCl(a. 1)) 6.27)

2 (2m)3 ) 27
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can now be justified: It is a re-summation of the most diverging diagrams of the perturbative
expansion.

The ground state energy can be calculated by the GoW, approximation:

E[G] Eo_lh{Z/{ln (Go (k,w) G (k,w)] + Gy (kz,w)G(k,w)—l}—i-;O(b[G]}

(6.28)
~ b [Go] + 0 (567) (6.29)
0
ih dq dv
= _EV/ @n) / o In[1 —v(q)xo(g,v)] + O (6G?) (6.30)

The correction due to G = G — Gy is of the second order because §E[G]/dG = 0. The evalu-
ation of the integral can be found in FW Eq. (12.53-12.61). Note that the energy includes the
exchange energy Eq. (6.10). The total ground state energy can be written as (in Ry):

E 221 0916

72 T

+0.0622In7rs — 0.094 + O (rsln7y) ... (6.31)

The correction to the kinetic energy and the exchange energy is called the correlation energy.
The constant term includes the contribution of Eq. (6.17a). The singular expansion (i.e., o Inr,)
is a result of the divergence observed in Eq. (6.17¢).

Further improvement requires quantum Monte Carlo (QMC) simulations. An interpolation for-
mula for the ground state energy of the electron gas is presented in GV §1.7.2.

Wigner crystal phase becomes more stable (lower energy) than the electron liquid phase when r;
is sufficiently large. The phase transition occurs at s ~ 100 in 3D. There could be more phase
transitions before the transition to the Wigner crystal (e.g., to a ferromagnetic electron liquid).
The issue is yet to be fully clarified. See GV §1.7.2.

6.1.3 General structure of the self-energy

The Green’s function satisfies the equation:

Gl =50 1) — / azv(1 - 2) (T [§ ()9 ()d(1)i (1) ) (6.32)
=5(1-1)— ﬁ/d2v( - 2)G?% (12,12). (6.33)

It suggests:
/dZE (1,2)G(2,1") /d2v (1-2)G? (12,1'2). (6.34)

Substituting Eq. (5.12) and (5.49) into the equation, we obtain an exact relation for X:

1
1 .
1 \ . 1
&: ~O+ 4 iy (6.35)
) {,’ 1<h>
2
2
1
Y (k) = Zur(k) + 7 /dpdqv(q)T(k +¢,p—q¢k,p)G()G(p—q9 Gk+q). (6.36)

where the first two terms are nothing but the Hartree-Fock contribution.

T can be obtained from the irreducible interaction I by solving the Bethe-Salpeter equation
Eqg. (5.50). By choosing a proper set of diagrams in Eq. (5.43) or assuming an approximated form for
I (see §6.2.3), one could close Eq. (6.35).

For certain systems (e.g., Fermions with hard-core interaction), re-summation is needed for ob-
taining I. An example can be found in FW §11.
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6.2 Density response function

6.2.1 Basic properties

Density response function describes how the density changes in response to an infinitesimal ex-
ternal scalar potential:

p(rt) /dr /dt (rt, 7't op(r't), (6.37)
X (rt,r't') = —ﬁ9(t—t ) ([p(rt), p(r't)]) . (6.38)
For spatially-temporally uniform systems, it is more convenient to use the Fourier transformed
form
op(q,w) = X" (g, w)Pext(q, w), (6.39)
r L A R
X ((Lw) = _ﬁ 0 dte t<[pq(t)7p*q]>7 (640)

where pg(t) = >, e7 07 =37, 4 ak g.0 (DKo (t).
Time ordered density correlation function is defined as
x(rt,r't') = —% <T [Aﬁ(rt)Aﬁ(r't’)]> = %Gf) (rt,r't';rtt Pt (6.41)

where Ap(rt) = p(rt) — po. The thermal (imaginary time) version of the correlation function
is defined as

L, rir’) = —% <T [Aﬁ(r7)Aﬁ(r’7')}> . (6.42)

Fluctuation-dissipation theorem can be established for the density correlation/response functions.

Density structure factor is defined as

o 1 [ iw R .

S(a.) = ihoy (@) = [ dee (Bgg()85-0) (6.43)
1 K, — K
_ . n m —BKm A 2
ZN;QM (w e )e [(m | Apg | n)]?, (6.44)
which is related to the PAIR CORRELATION FUNCTION Or RADIAL DISTRIBUTION FUNCTION.
Fluctuation-dissipation relations The spectral function is defined by

B(qa UJ) = _2Ier((Ia (U) =i [X> (q7 w) - X< (qa CU)} (645)
- ’Lho (1—ePM) S(q,w), (6.46)
B(q,w) = —B(—q, —w). (6.47)

The density response functions are related to the spectral function by:

x(g.) o —aE + e
Xr(q7w) :/TB(q,wl) w7w11+1r] , (648)
x*(q,w) L
w—wi—in
X
Re{ (q,w } P / dwr B(g,w1) (6.49)
X 2T w—wy
X(q,w) —coth 252
Im¢ x'(q,w) p = - §B(q,w). (6.50)
x*(q,w) +
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21w, — wq

X (g wn) = /OC dwy Blg,w1) 6.51)

where np(w) = 1/(e#™ — 1) is the Bose distribution function.

f-sum rules 1 )
w poq
—wB —_ 6.52
/_ IS 27rw () = m ( )
To derive the sum rule, we make use of the continuity equation and the commutation relation
Aa hq .
[qup—q/:| = Eﬂq—q/a (6.53)

where j, is the current density operator.
Higher order sum rules could also be established. See GV §3.3.3.

Stiffness theorem The energy/grand potential of a system with an inhomogeneous density is

Z W" (6.54)

where x(q) = x"(q,w = 0).

Proof

* Consider a system perturbed by an external potential

Hy=H+ = Zap aba- (6.55)

» The perturbation induces a density change dp,. Conversely, to create a given density
distribution,

bq = Pa_ (6.56)

* We scale the perturbation with a factor \: Hy(\) = H + A >_q0P—qPq. By applying the
Hellman-Feynman theorem, we have

B, = (Hy) = By +/ d/\<a}g¢)\( )> (6.57)

on—l—/ dA A= ZX ) og|? Eo+f—Zx ) |dql® - (6.58)

* The internal energy of the system is

E[pq]=<> Ey—+ Zx ) |6ql* - (6.59)

Note that the stiffness theorem can be generalized for arbitrary observables.

Compressibility sum rule

. 1 _ Plpoe(po)] 1
a5 [xr(q) H}(q)} - o3 mK’ (660

where K is the compressibility. The compressibility of a two-dimensional electron gas can be
measured by QUANTUM CAPACITANCE experiments. It can be negative.

Proof

* Introduce a long-wavelength density modulation épq.
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* Determine the change of the energy by
— applying the stiffness theorem: 6E = — [pq|° /2VX"(q);
— calculating the energy directly, including the electrostatic energy and the local energy

OF = 6/drp(r)e [p(r)] + %v(q) 16pq|? - (6.61)

» Equate the results from the two approaches and set g — 0.

Proper density response function is defined by

1 1
- . 6.62
X'(q,w)  x"(q,w) Tola) (6.62)

It is the density response function of a fictitious system in which the positive charge back-
ground always compensates the change of the electron density.

Dielectric function is defined as the ratio between the applied external potential and the total
(screened) potential:

_ , _ o(qw)

Pse(q;w) = d(q,w) + dina(q,w) = (a.2)’ (6.63)
where ¢ina(q) = v(q)dp(q,w) is the Coulomb potential induced by the perturbed electron den-
sity.

1 r
dqw LT v(g)x"(q,w), (6.64)
e(q,w) =1 - v(@)X'(q,w), (6.65)
Vigw) = X&) (6.66)
e(q,w

6.2.2 Random phase approximation (RPA)

The random phase approximation assumes

X'(q,w) = xp(q; w), (6.67)
where x§(g,w) is the density response function of an ideal (non-interacting) electron gas.

Intuitive picture We treat electrons as independent particles, and approximate the effect of the e-e
interaction to the average potential ¢;,q (Hartree approximation):

dp(q,w) = xo(q,w) [¢(q,w) +v(q)op(q,w)], (6.68)

where x§(q,w) is the density response function of independent electrons. The full density
response function is

errA (q,w) = 1 —v(q)xo(q,w), (6.69)

Xo(a,w) _ xblgw) 6.70
€RPA (qa UJ) 1— U(q)XB(q,W) . ( . )

X%PA(Q? w) =

Diagrams corresponding to RPA are

XRPA<q,w>=;[<:>+<:><:>+<:><:><:>+...] (671)
= %<:> . (6.72)
v i)
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Lindhard function is the density response function of a non-interacting electron gas:

Xo(g,w) = %<:> (6.73)

_ 1 dk [dv . . i )
- h;/(2ﬂ')3/27’r [Ga(k+q’y+w)GU(k’y)+Ga(k+qaw+y)Go(k7V)]

(6.74)
dk  f(ex) — f (€k+q)

=2 , 6.75
/ (2m)3 hw + € — €prq +in (675)

where f(e) = ny(e) = 1/(e(¢=#) 4 1) is the Fermi-Dirac distribution function.

Zero temperature The function can be determined analytically :
kr w+in q w +in q
p =N(0)— |¥ —— -0 — 6.76
() = NOE [ (5 ) g (220 1) 670
2z 1-22 241 |2/ 1 1

where N(0) = mkg/(wh)? is the density of states at the Fermi surface, and vg = hkr/m is
the Fermi velocity. More explicitly,

Rexp(gow) 1 1-v2 |uo—1| 1-v} Jug—1
N(0) R I R | Ry S A | (6.78)
Imxj(q,w) _ 7
Ve =R =) 00 )] 679
i= 1 - Y 4 1
g=q - ve= or + TS (6.80)
Finite temperature The function can be determined by
Rex{)(q,w / r—v_| L |z—vy
N(0) dr T+ v_ In z+uvy|/)’ (6.81)
T 1 2 —
mxo(a,w) _  m kBT i e B(2er — )] (6.82)
N(0) Cdepq  depq 1+ exp [ﬁ (u+epfu)]
F(z,T) = a (6.83)

" oxp[B@ler — )] + 1
where ex = h?k%/2m, and p is the chemical potential at finite temperature.

See Fig. 6.2 for the Lindhard function, and Fig. 6.3 for a comparison between xf and x;pa. See
GV §4 for a thorough discussion on the Lindhard function.

Long-wavelength and static limit: The Lindhard function has a singularityat¢ — 0 and w —
0. The limit depends on the ratio w/vgrq. Depending on the order of taking the limits, we

have:
glgbglg})m(q’ w) = —N(0), (6.84)
poq 3 ¢*vf

corresponding to the static limit and dynamic limit, respectively.
It is common to see the behavior in response functions:
* When calculating non-equilibrium responses (e.g., conductivity), one should use the
dynamic limit.
* The static limit of a response function could be different from usual thermodynamic
susceptibilities. There are three different kinds of static susceptibilities:
— isolated susceptibility xi*° = lim,, 0 x*(w);
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Figure 6.2: Lindhard function at zero temperature in different parameter regimes, shown as
—xo(g,w)/N(0). Top: static response function for w = 0; Bottom left: ¢ < 2kp; Bottom right: ¢ > 2kp.

The dashed lines show the imaginary part of the response function. GV Fig. 4.1, 4, .5
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Figure 6.3: Comparison between the RPA density response function and the Lindhard function.
Left: static response functions, the solid line for the RPA, the short dashed line for the Lindhard, and
the long dashed line for the one with the local field correction (see §6.2.3); Right: imaginary part
of the RPA (solid line) and the Lindhard function (short dashed line). The solid triangle indicates a
J-function peak associated with a plasmon resonance (see §6.3). GV Fig. 5.9, 5.10
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— isothermal static susceptibility x* = — (9p/0p);
— adiabatic static susceptibility x4 = — (9p/0p)s.
There exist inequalities:
XT > Xad > Xiso- (686)

See Eq. (4.2.32-34) of Ref. [15].

Friedel oscillation: electrons screening an external potential are restricted in |k| > kp. The sharp
restriction in the momentum space results in an oscillation in the real space. FW814

The RPA response function is shown in Fig. 6.3. The static density response function can be
written as

r - N(0) (¢/kr)* g (q/kF) 6.87
Xkpa (q) (q/kF)2 + [47e2N(0)/k%] g (Q/kF)’ ( |

11 22\ [1-2

In the presence of a test charge —Ze, ¢4 = Ze?/¢?, the induced density is dpq, = xkpa (9) g, and

2
5p(,’,,) — _ / (2d7:1)3 eiq~r (qQTF/kF) g (q/2kF) o~ _g 2€ . cos <2fFT) ; (6.89)
(a/kr)” + (qre/kF)” g (a/kp) "2 T (4+¢) r
where grp = \/47e*N(0) = (4ar, /7)*/? kp is the Thomas-Fermi wave number, ¢ = ¢2,/2k2. It

is different from what would be expected from a pure hydrostatic (long-wavelength limit) con-
sideration, i.e., the Thomas-Fermi approximation. The latter predicts p(r) = —Zg3pe 977"/ (47r).

At finite temperature, the Fermi surface is smeared. §p(r) eventually becomes dp(r) — —Zqde= 9" /(4nr)
at r — oo, where gp = +/4mpoe? 3 is the Debye screening length. See FW §33.

Caveats of the RPA:

« It completely ignores exchange-correlation effects by assuming that electrons just feel a
mean-field electrostatic potential (Hartree approximation).

« It violates the compressibility sum rule Eq. (6.60) —-the RPA predicts a compressibility al-
ways the same as that of a non-interacting electron gas:

1 1 1
——=—-lm——~-lim —— = —. (6.90) (6:60)
P a0 x(q) a0 xg(g)  N(0)
6.2.3 Local field correction GV 5.4
Exact series of diagrams of the density response function can be obtained from Eqg. (5.49) and the
Bethe-Salpeter equation Eq. (5.50): (6.41)
i
X(q,w):ﬁ <:>+<:>.-.<:>+<:>.-.<:>.-.<:>+..l, (6.91)
ko k'o’
Ikwa’,k’w’a’(q7y) = }---{ 5 (692)
k+gq,0 k' +q,0

where we denote the irreducible electron-hole interaction I as a bold vertex. Compared to the
RPA:

» The exact (bold) Green’s function assumes the places of the free Green’s function;
» The irreducible interaction I assumes the places of the bare interaction v(q).

Note that Ix,e ko (g, v) 1 In general not a local interaction, i.e., it cannot be written as a form
I(r—1').
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Local field approximation involves two drastic approximations:

1. Approximate the irreducible electron-hole interaction as

Ikwo,k:’w/o’(qa V) ~ [1 - GJU'(q)} U(Q)- (6.93)

The dependences on k and k' are ignored. It basically assumes that the irreducible effec-
tive interaction is a local interaction I(r; — r3). The dependence on frequencies is also
ignored -t is a static approximation.

2. Replace the electron-hole bubble with the non-interacting counterpart, i.e., the Lindhard
function. This is justified by the fact that the exact Green’s function is close to the non-
interacting one except for small renormalization effects.

As a result, we have

r . Xb(g,w) 6.94
X(q,w) = 1 v(q) [1 — G+(9)] x5(q,w)’ oo

where
Gx(q) = w o

Physical interpretation: The effective potential seen by an electron is different from the mean-field
potential of the Hartree approximation because:

» The electrostatic field seen by an electron must not include the contribution from itself;

» Because of the antisymmetry of the wave function, an electron at a give position excludes
the presence in its proximity of another electron with the same spin orientation -ex-
change holes;

» Coulomb repulsion prevents two electrons staying too close —correlation holes.

To take account of these corrections, we introduce the local effective potential felt by an elec-
tron:

ett o (@, w) = G0 (q,w) + > _0(q) [1 = Goor ()] 6por (q,w). (6.96)

The term proportional to —v(q)Gs.(q) is the correction due to the aforementioned effects.

Determination of G(q): various approaches have been developed for determining the local field
correction factor.

» Asymptotic behaviors of G(g) are known.

* One of most successful approaches is developed by Singwi, Tosi, Land, and Sj6lander,
usually referred as “STLS” scheme.

* Ichimaru and Utsumi develop an interpolation formula [12]. See Fig. 6.4 for G(q) from the
Ichimaru-Utsumi interpolation formula. Further developments are reviewed in Ref. [11].

Effective interactions The local field correction introduces vertex corrections to RPA. In the RPA,
the effective interaction between two particles is always W(q, v) = v(q)/erpa(q, v), N0 matter
what the particles are. With the local field correction, the effective interaction will be different
for different circumstances:

Test charge-test charge interaction A test charge (not an electron) just sees the electrostatic
potential. Therefore, the interaction between two test charges is screened by the dielectric
function defined in Eq. (6.63):

ACLC (6.97)
e(q,w)
! L (@6 ), (6.98)

X (qw)  xh(qw)
B v(@)x0(q,w)
1 +v(q)G+(9)xb(q,w) (6.99

€(g,w) =1-v(@)x" (g,w) =1
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Electron-test charge interaction A test charge density p¢(g,w) induces a perturbing poten-
tial ¢(q,w) = v(q)ps(g,w) and an electron density change dp(q,w) = x*(g,w)d(q,w). The
potential seen by an electron has the exchange-correlation correction:

Gut(4:0) = 9la.) + (@)1 = G+ (@) bpla.) (6.100)
_ ¢(q,w)
T 1-v(g)[l - Gy(g)] xb(g,w) (6.101)
As a result,
W= oty (6.102)
€et(q,w)
cer(q,w) =1 —v(q) [1 — G4 (9)] xp(q,w). (6.103)

It corresponds to the diagrams:

Wt:}{+}<:>..(+}<:>..<:>._(+ (6.104)
By applying Eqg. (6.35) and (5.50), we can determine the self-energy:

. dg dv
Yira (kyw) = 1/ @n) %Wet(q, v)G(k+ q,w+ ). (6.105)

Electron-electron interaction is defined to be the IRREDUCIBLE ELECTRON-ELECTRON INTERAC-
TION, which includes all diagrams irreducible in the particle-particle channel.

* An electron density py with spin 1 exerts effective external potentials to the system:

91(g.w) = v(q) [1 - Gy1(0)] py(q.w), (6.106)
01(¢.w) = v(q) [1 - Gp1(0)] py (. ). (6.107)

» They result in effective local potentials

~

1 ! Py
L= _ Ly 6.108
et I—o(l=Gy)xo  1+vG-x5] xo (6:108)
20G _
g4 oy — —2C= 6.109
Pettt = Peft,| T vG,XBpT ( )

 The effective external potentials Egs (6.106, 6.107) include the exchange-correlation
corrections, which are contributions from the effective many-body medium consist-
ing of all other electrons. They should be excluded from the effective interaction. It
amounts to subtract from ¢eg + and ¢er, the contributions —vGrypr and —vG4pq,

respectively.
* The effective interaction can be obtained by dividing the resulting effective potentials
by pr:
Wip = v+ [o(1— G2 X + (0G-)* X, (6.110)
Wi =v4 (1 —GOP X — (vG_)* ¥, (6.111)

where x§ is the spin density response function with respect to the spin density oper-
ator S, = py — py.
The formula is known as the Kukkonen-Overhauser electron-electron effective interac-
tion formula. It corresponds to the diagrams:

S R e B o AL
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Figure 6.4: Local-field correction G4 (q) for r, = 4 and 10. The solid lines show G(q) from the
Ichimaru-Utsumi interpolation formula.

6.3 Plasmon

6.3.1 Collective excitation

In the absence of the external potential, we have the equation
€(q,w)dsc(q,w) = 0. (6.113)

The equation could be Fourier transformed to the real space and becomes an equation governing the
propagation of a potential/density wave. The dispersion of the wave is determined by the equation

e(q,q) = 0. (6.114)

Note that a zero of the dielectric function is also a pole of the density response function.
Applying Eq. (6.65) and the the RPA approximation x* = x§ as well as the long-wavelength limit

Eq. (6.85), we obtain
Qg ~ /w2 + %q%%7 (6.115)
2
wy = 1 TP0C (6.116)
m

Classical picture: The plasma mode at g = 0 is the oscillation of an electron gas as a whole relative
to its fix positive charge background (see Fig. 6.5a):

where

is the plasma frequency.

* A displacement z results in two parallel layers of opposite charges at the two ends of the
SyStem: Player = POL-

» The charge layers give rise to an electric field in the bulk £ = 4mepox, which exerts a
restoring force to electrons.

* The equation of motion: m# = —eE = —4mwe?pox. It predicts an oscillating frequency wy,.

75

Ref. [12]

GV §5.3.3

(6.63)

(6.66)



S) /é i
S 4
S 5
S
ﬁy 3= [ 2p ]
S/ ;‘Y < i ]
> - _
o ¢4 -/ ;
S /@/ - ]
S /@ (L o
S /@/ -]
S /@/ ]
0 I 1 I 1 1 1 1
e 0 1 2 3
X 9
kF‘
(a) Mlustration of the plasma oscillation. (b) The electron-hole continuum (shaded area) and the disper-

sion of plasmons. When the dispersion enters into the contin-
uum, the plasmon is heavily damped and ceases to exist in prac-
tice.

Electron-hole continuum and damping: A plasmon has an infinite lifetime only when the dielec-
tric function has a vanishing imaginary part at the frequency of the plasmon. This is true
when the Lindhard function has a vanishing imaginary part at the frequency. It depends on
whether or not an plasmon (or any other collective excitations) could excite an electron out of
the Fermi sea to create an electron-hole pair:

» The process of exciting one electron from k to k + ¢ is constraint by the conservations of
the energy and momentum:

_ Rlk+q® MK K¢ K

Ky = = k. (6.117)

* Because the maximum |k| of occupied states is kp, the excitation is possible only when

max (0,w—(q)) < Qq < wi(q), (6.118)
2
wi(q) = % =+ vpg. (6.119)

The region constrained by Eq. (6.118) is called the electron-hole continuum. We note that
it is exactly the region for Imy}(q,w) # 0. When the wavevector-energy of a plasmon
enters into the continuum, it will be damped. See Fig. 6.5h.

Oscillator strength: the density response function x*(q,w) could be regarded as the propagator of
a plasmon, just like G*(k,w) for an electron. The counterpart of the quasi-particle weight for

a plasmon is defined as
1 ORee(q,w)

2
— = ~ . 6.120
Zy " 0w o, O (6:120
As a result: Q
Imxgpa(g,w) = 4 _r [0 (w—Qq) —0(w+Qq)]. (6.121)

~ 20(q)
Note that it satisfies the f-sum rule Eq. (6.52).
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6.3.2 Functional integrals of plasmons

By using functional integral formalism, one can obtain an effective action for plasmons directly
from an action for interacting electrons. It demonstrates how quasi-particles/collective excitations
emerge in an interacting electron system.

Action of electrons We start from the action for interacting electrons. The action can be written as

2 |k|?
w*] = Zw;:” <lhwn + 2!',n| ) wkﬂ 2FLBV Z wk—i-q aquk’—q o’ ¢k’ wkzﬂ
ko

kk'qoo’
(6.122)
where we adopt the short-hand notation k = (wn, k), >°, =3, >, and
ro = (BBV) Y2 / dr / dr “n 7R Ty (r, 7). (6.123)
Note that ¢ is a Grassmann variable, not a field operator.
The interaction part of the action can be re-organized as
mt [w w 2vh/6 Z qpq7 (6.124)

where p, = 37, Vi Vktq.0- NOte that pf = p_g.

Hubbard-Stratonovich transformation is a trick to convert an interacting system to an equivalent
system in which particles are non-interacting but coupled to fluctuating auxiliary fields.

We exploit the Gaussian integral identity

exp (;PTVP> = [det (2‘/)]71 /H dqudd)l |: d)TV 1¢ 1 ( Jr¢)+ (ZST ) (6.125)

27
where V is a positive-definite Hermitian matrix (repulsive interaction). Note that i factor on the

right hand side is needed to give rise to the minus sign (repulsive interaction) on the left hand
side.

* In case of an attractive interaction, i.e., V' is negative-definite, the identity

exp <—pTVp> [det (—2V)] /H d(;Sfdgb, exp BﬁbTVl(b - % (PT¢+ ¢TP)} (6.126)

2mi

should be used. Now p is coupled to a real potential ¢.
* The real-time counterpart of the transformation:

e =) [T e {G [0V 0= (os o)} G2

Transformed action: By applying the Hubbard-Stratonovich transformation, we obtain:

: 1
o= Sine/h _ 7 / D¢ exp{ oy Z [ q)pg +ip_ Q%} } (6.128)
Zgo = / DegeSeoldl/R (6.129)
Sg0[¢] = L > gl logl? d hﬁd v 2 (6.130)
%0 @] = W . lq| |¢q| r . IV (r)|”, .

where ¢(r7) = (hSV) ™" >y bqe” T with ¢ = (v, q). We assume that ¢ is a real field,
therefore ¢_, = ;.
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» The action is transformed to

1 12 |k|? i
Sy, v", 9] = Sre2hBY > lal16g® + > v, [(—ihwn + 2|m| - u) Ok + l¢k—k’] Vo
q

kk'o hBY
(6.131)
hB 1 R2V2
= /dr/o dr { . Vo (rr)]> + Zy;;(rﬂ [h@T — o A+ igﬁ} wg(rT)} .
(6.132)

The first term is the energy associated with the fluctuating potential, while the second
term describes a non-interacting electron system coupled to an imaginary potential i¢.

After completing the integrals over ¢ and ¢*, we can express the partition function as

Sg0 [6] — Wy [iqb}) (6.133)
h ’ '

A 1

Z =— [ Doexp|—
Z0 " 7o ¢ p(

where

Wo [i¢] = In <eXp [_;,L / dr / drp(rr)d)(rr)} >0 = Trln

is exactly the connected generating functional for a free electron system, albeit with
an imaginary potential. One can interpret —3=1W, [i¢] as the grand potential of a non-
interacting system in the presence of a potential i¢. (5:8)

- ig})ﬂ (6.134) (519

* We can expand W, [i¢] as a series around ¢ = 0:

W [ig] = Z% <—;)n/d1...dng§g> (1..m1%..0*)é(1)...6(n).  (6135) (10
n=1 "

n)

where g§0 is the n-particle connected Green’s function of a non-interacting system.

First order: géé) = po 1s a constant. As a result, only ¢,—o component is contributing.
However, there is no ¢,—o component because of the charge neutrality. 6.1

Second order:

ﬁWéQ) lig] = _271h /d1d2g§(2)) (12; 1+2+) $(1)6(2) (6.136)
- %/dldQXOT (1,2) ¢(1)6(2). (6.137) (641)

Action of plasmons: to the second order of ¢, we have
, 1
Sp = Son[6] = AW [i6] = ¢33 zq: gl [1 = o(@)xg (9)] égl* + - - (6.138)

It corresponds to the RPA.

* We observe the emergence of a bosonic field theory out of a Fermion system. By substi-
tuting w with iv,,, in Eq. (6.85), we obtain x{d (q, ) — —pog?/mv2, for the dynamic limit.
We have

Sp = (V2 + w2 gl (6.139)

1 1
- 2hpY zq: v(q)v

» We could have the full knowledge of the field, not limited to a low energy effective one.

» Higher order terms will introduce corrections. They represent the effects of fluctuations.
The corrections could sometimes become so significant that the RPA (mean-field) result is
qualitatively wrong - be cautious. In principle, one can directly calculate W [i¢] numeri-
cally.
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6.3.3 Collective excitations
There are many possible ways to decompose the interaction:
Direct channel is the decomposition shown in Eq. (6.124).

Exchange channel decomposes the interaction as

mt W} w QVHB Z k k pk/q oo’ Pkq,00" (6140)
qgkk’oo’
With prg,oor = V50 Vktq,o-

Pairing channel decomposes the interaction as

Sint [, 9] 2ww S vk — KDy oo B0 (6.141)

qkk' oo’
With @44 60’ = Vitqo o
The arbitrariness can only be eliminated by physical reasoning:
» Had effective actions been treated exactly, different decompositions would be equivalent.

* Anincorrect decomposition usually leads to difficulty in getting a meaningful low energy (long-
wavelength) effective theory.

* When |q| is assumed to be small (long-wavelength limit), the different decompositions are
actually non-overlapping. Therefore, one can introduce several decoupling auxiliary fields
simultaneously in the long-wavelength limit.

Second quantization approach The approximation like Eq. (6.138) in the functional integral ap-
proach is equivalent to approximating the interaction part of the second quantized Hamilto-
nian as

N 4 . . A
Hype =~ 2)/2 Z {< a,_ qU,apg>aL+ankg+<aL+qaakg> L qo’ Apo’ (6.142)

q#0 ko,po’
= <a,1+qaa,,g,> it qortke = (@ qorlino ) 8l gotiper + -} (6.143)

i.e, applying Wick’s theorem to contract part of Hi, to yield a bilinear form. The many possible
ways of the contractions correspond to the different channels of the decompositions —the first
and second lines correspond to the direct and the exchange channels respectively.

It is difficult to go beyond the mean-field approximation to consider fluctuation effects in the
second quantization approach. In contrast, it is straightforward for the functional integral
approach to consider the fluctuation effects —they are corrections due to the high order terms
of W [i¢].

Problems

1. Hartree-Fock approximation: consider an interacting electron system subject to a single body
potential u(r). In this case, system is not uniform and the plane-wave states are not eigenstates.
We assume that Green’s function can still be diagonalized in a basis ¢, (7).

(a) Determine the ground state energy to the first order of the interaction v(r — ') by using
the rules of the unlabeled Feynman diagrams or the Hugenholtz diagrams. What is the
matrix element for an interaction vertex?

(b) The resulting ground state energy could be regarded as a functional of the single-particle
basis wave function ¢, (7). ¢.(r) should be chosen such that the ground state energy is
minimized. Determine the equation satisfied by ¢, ().
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2. Determine the expression for Eq. (6.17a), and show that it is independent of the density. MH §5.1.5
3. Alternative proof of the stiffness theorem:

(a) Construct an effective action I' [p] by coupling the system to a local potential ¢(r);
(b) Expand the functional to the second order of §p

1

AQfp) = 1T~ ¢ (r ol + 33 Ll

0pq0p—q

B B

Jpqépq> +..., (6.144)

P PO
and relate the expansion coefficient with the response function x = dp/d¢. Hint: Eq. (5.44).

4. Re-derive Eq. (6.75) by using the standard perturbative technique of the thermal Green’s func-
tion: FW §30

(a) Determine x&. See Eq. (6.42).
(b) Carry out the summation over the Matsubara frequency. Hint: apply Eq. (3.51).
(c) Get an expression of x}, by applying the analytic continuation.

5. Substitute Eq. (6.138) into (6.133) and complete the integral to obtain an expression for the
grand potential of the system. How is the expression compared to Eq. (6.30)?
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Chapter 7

Phase transitions and spontaneous
symmetry breaking

7.1 General theory

7.1.1 Phase transitions
Equation of state is defined in the space of three variables:

1. temperature T
2. external field;
3. the thermodynamic variable conjugate to the external field.

Ferromagnetic phase transition external field - magnetic field H; conjugate thermodynamic vari-
able — magnetization M. See Fig. 7.1a.
* T > T,: paramagnetic phase. M — H curves are continuous.

* T < T.: ferromagnetic phase. M — H curves are non-analytic. 1 and | phases coexist
between A and B.

o T = T.: critical point. The coexistence region is reduced to a single point. The phase
transition becomes continuous.

Liquid-gas transition external field - pressure P; conjugate thermodynamic variable - volume V
or the density p = N/V. See Fig. 7.1b.

* Liquid, gas and fluid phases are analogous to the ferromagnetic 1, ferromagnetic | and
the paramagnetic phases, respectively.

* The transition becomes continuous at the critical point C.
* Liquid-gas coexistence region is a curved surface instead of a plane in the ferromagnetic

case.
7.1.2 Landau theory

Paradigm

* There exists an order parameter (e.g., the magnetization M) which is zero in one phase
(disordered phase) and is non-zero in the other phase (ordered phase).

* There exists a Landau functional £ [m(r), H,T] which is a continuous function(al) of its
arguments and gives rise to the partition function of the system by

Z = / D [m(r)] e~ P () /1], (7.1)

This is the definition of the Landau functional.
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Figure 7.3: From left to right: H-M relation, F = —W, T" function, and the desirable form of £. The
red dashed line indicates the H-M relation which could give rise to the double well in £.

— The functional can be identified/derived from microscopic Hamiltonians/actions (see
§7.2,7.3,NO §4.2).
— The functional can be constructed phenomenologically:
# The form of £ is constrained by the symmetries of the system.
# Phase transition occurs when £ has multiple degenerate minima. See Fig. 7.2.

* Near the critical point, one could expand the functional as a power series in m.
For example:

Lm(r), HT) ~ /dD — |Vm(r)]® + cthm + dotm? + cshm® + bym*| | (7.2)
with

t=T-"1T, (7.3)

h=H —H, (7.4)

# The order parameter may have multiple components.

# UNIVERSALITY, i.e., universal behavior shared by classes of diverse physical sys-
tems, is expected because only a few terms of the expansion are relevant and the
form is constrained by symmetry.

* A quantum system could be regarded as a classical system in D = d + 1 dimensions (d
spatial dimensions and one dimensional imaginary time).

— The span of the time dimension is finite at finite temperatures. As a result, it becomes
irrelevant at the critical point because of the diverging correlation length.

— At zero temperature, the time becomes a true dimension. Phase transitions which are
impossible at finite temperature could become possible ~-QUANTUM CRITICALITY.

Effective action and Landau functional One could construct an effective action as a functional of
m(r) by using the procedure shown in §5.1:

D m(r)] = —W [H(r)] - 3 / drm(r)H(r). (7.5)
It is tempted to interpret the Landau functional as

BE [m(r)] = T [m(r)] + BMH. (7.6)

where M = [drm(r), and H is the spatial average of H(r). Unfortunately, the association is
not correct in general

« [ is the free energy of a system with a given configuration of the order parameter, not
the Landau functional that determines the partition function and free energy.

* 0£/6m = 0 does give rise to the correct equilibrium state. The association has no problem
whenT > T..

83

NO Fig. 4.4

§7.1.4

(3.34)

(7.18)

(7.1)



Figure 7.4: A Mexican hat showing the energy landscape of a symmetry breaking system.

* When T' < T,, however, because ~
oL _
oM

L is a constant in the coexistence region instead of the double well. See Fig. 7.3.

0, (7.7)

» The effective action is useful in determining the critical point of the phase transition be-
cause the susceptibility x = M /9H diverges at the point:

92 C~ 1
= — _ (6.54)

Symmetry breaking Although the Landau functional £ for T' < T, has all symmetries, its minima
break (part of) the symmetries.

» The symmetry group of the minima is a subgroup of the symmetry group of the system:
G'CcG. (7.9)

The degenerate states of the minima are connected by the elements of G” = G/G’.
» The symmetry breaking is a result of the thermodynamic limit:

M= lim lim M(H)# lim lim M(H)=0. (7.10)
H—0 N—oco N—o00 H—0

The order of the two limits matters.

* For discrete G”, the system is trapped in one of the minima, the probability tunneling to
other minima goes to zero in the thermodynamic limit. The system becomes non-ergodic.

* For continuous G”, fluctuations (via collective Goldstone modes) may or may not destroy
the order. It depends on the dimensionality of the space and tensorial character of the
order parameter.

Order parameters and conjugate fields for a variety of phase transitions are shown in Table 7.1.

7.1.3 Mean field theory NO 54.3
The mean field approximation is just the stationary-phase approximation for evaluating Eq.. (7.1):
s =0, (7.11)
5m(r) m(r)—m
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Phase transition Order parameter Conjugate field Broken
symmetry
. L . A Time-
Ferromagnetic magnetization m; = <Si> Zeeman fleld H -3, S reversal
ferromagnetic m; = Sz‘A i€ A Hs - (ZieA S; — Sien Sz) reversal
-8, i€B
. o . 5 Spatial
Ferroelectric polarization d; electricfield E - Y, d; inversion
Liquid-gas density difference pressure P None
Charge density . o .
wave (CDW) density p(r) potential p(r)p(r) Translation
. . . - Translation
Spin density spin density S(r) = , o .
A - dt
Wave (SDW) | 5, (Gt (r)) | SPIPOCUELS()ch(r) | and dme
Superfluity condensate amplitude N
(Bosons) b= <¢(T)> condensate source Ji' + h.c. U(1) gauge
. pairing amplitude pairing potential
Superconductivit ~ . 5 ~ U(1) gauge
P I a =) = (i) | Al )il 1he | U188
Table 7.1: Order parameters and conjugate fields.
7 ~ 7 PEM AT (7.12)
By assuming a spatially uniform stationary solution, we have
(7.13)

o fE= = T<T, H=H,
m XX . .
hl/3 T=T,

Correlation function The Landau functional can be expanded as a quadratic form around the sta-
tionary solution:

Lim(r),H = H.,T| ~ /dDr {g IV om(r)|® + blt] [5m(r)]2} : (7.14)
p={® T>Tc (7.15)
2dy T < T,

The correlation function can be determined:
Xmm (P —7") = =B (dm(r)dm(r')) ~ emlr=rle, (7.16)

1
mm 9 717
Xmm (@) ~ = (7.17)
§=/5 17 (7.18)

At the critical point, the correlation length diverges, and
dPq elar 1

X’mm(r) ~ / (271-)D (]2 ~ ’I‘D72. (719)

7.1.4 Fluctuations NO §4.4

The validity of the mean field approximation depends critically on the dimension D:
* D > D.: the mean field theory is valid and predicts correct critical exponents.

* D. > D > D,: the mean field theory still works but predicts incorrect critical exponents.
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* D < Dy: the mean field theory is invalid and qualitatively wrong.
D, and D, are called UPPER CRITICAL DIMENSION and LOWER CRITICAL DIMENSION, respectively.

Upper critical dimension We examine the relative importance of different terms of £ by dimen-
sional analysis. We rescale the Landau functional Eq. (7.2) to

1
sLl6l= [ aPr |5 IV6 + 26l + L orl'|. (7.20)
where rq vanishes at the critical point. From 3£ ~ 1, we have
¢ =L ", (7.21)
[ro] = L2, (7.22)
[uo] = LP 2. (7.23)

We can then recast the functional into a dimensionless form by the transformation (for 7’ > T)

r= wral/Z, (7.24)
b = 0;”;%‘2’ (7.25)
aclo] -+ 52 (3] = [ a%e |5 |vite)| + @) + §it@) (7,26
2 2 4 ’ '
with o
g = UoTy : . (7.27)

When the system approaches the critical point, o — 0:
* D > 4: g — 0. The ¢* term is irrelevant. The mean field theory describes accurately the
critical behavior.

* D < 4: g — oo. The ¢* term is relevant. The mean field theory will give the wrong critical
behavior.

* D = 4: The case is marginal and corrections should be expected.

It indicates that for ¢* term, D, = 4.
For other possible terms:

. d)n )
D, = 2 (7.28)

n—2

It turns out all orders of the expansion are relevant in two-dimensions.
* (V)" and ¢V"¢ are irrelevant when n > 2.

Lower critical dimension The mean field approximation may completely break down in low di-
mensions due to fluctuations generated by GOLDSTONE MODES.

Mermin-Wagner theorem: continuous symmetries cannot be spontaneously broken for D <
2,1e, Dy =2[19].

An example is the systems described by Eq. (7.20) with a 2-component ¢ field, i.e., ¢ is a complex
field and for T < T.:
o(r) = |g] "), (7.29)
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where |¢| = \/ro/uo is the magnitude of the order parameter. We ignore its spatial variation
because its collective mode is gapped '. The functional becomes (7.14)

<2
BL[¢] = M;‘ /dDr |V (r)|* + constant, (7.30)

Le., the excitation of ¢(r) is gapless. The corresponding collective mode has a dispersion wg « ¢
with a vanishing energy at ¢ — 0. It is the characteristic of the Goldstone mode.

The fluctuations of ¢ is

dPq (=)
Xop (T’ - T/) ~ / (27T)D T (731) (7.19)

It diverges for D < 2.

Topological defect The two-component model admits a special form of excitation because ¢
is only defined modulo 27. In 2D, one can have a distribution of (r) like

o(r,0) =10, (7.32)

where 6 is the polar angle of ». Because ¢(r) is single-valued, |¢(r)| must vanish at » = 0.
To minimize the energy cost, |¢(r)| = |$| except for a small core area with » < a, where a
is alength scale set by an underlying microscopic model. The excitation is called a vortex,
which is a TOPOLOGICAL DEFECT.

The nature and classification of topological defects are determined by the homotopy group
of the degenerate state space. See Ref. [18] for a comprehensive review or reprints in
Topology section of Ref. [2].

Kosterlitz-Thouless transition It turns out the particular 2-component system has a phase
transition in 2D. However, the transition is a TOPOLOGICAL PHASE TRANSITION: it has no
order parameter, and both phases before and after the transition are disordered phases.
They are different in correlation functions -either the usual exponential decay or the
one that decreases with the distance like a power. Microscopically, they are different in
whether or not topological vortex excitations proliferate in the system:

» The cost of the energy to create a vortex is

E,=7nJln 5, (7.33)

where J = |<;_5|2 /B, and L is the size of the system.

» The vortex can be created anywhere in the system. It results in a prefactor for the partition
function, or equivalently, an entropy

L
S =2kpgln—. (7.34)
a
* The cost of the free energy to create a vortex is
L
F,=E,—TS = (nJ —2kgT)ln — (7.35)

As aresult, when T > Tkt = wJ/2kp, the vortex excitations will proliferate.

AS §6.3

7.2 Bose-Einstein condensation and superfluidity

7.2.1 Phase transition

Non-interacting Boson system The Bose-Einstein condensation (BEC) occurs when the states with
€, > 0 cannot accommodate all particles even one sets p = 0 (maximally allowed value):

> np(ea) = N1y < N. (7.36)

€q.>0

10ne can view Eq. (7.20) as the classical energy of an elastic media. The collective mode is just the sound wave.
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A macroscopic number of particles will accumulate in the state with ¢, = 0. We have the
condensate density
7\ 3/2
(T =p|1— (=
pe(T) = p [ (T)

Interacting Boson system We consider a Boson system with a repulsive contact interaction v(r —
r') =gé(r—r’)and g > 0.

S, 9% / dr / dT{ (h8 hzf - u) () + g [1/)*(7'7)1/}(7'7)]2} (7.38)

" . R |k
= ;wk (—1hwn + 2|7n‘ > Vv + W Z wk«%qdjk’fq’l/}k . (7.39)

kk’q

(7.37)

Phase transition We can interpret the action Eq. (7.38) as a Landau functional defined in D = d+1
dimensional (=, 7)-space. For a uniform field +(r) = ¢, the action is reduced to

S[0.0"] = ngv [~ulof + 10l (7.40)

It predicts a mean-field critical point at x = 0, and |<5|2 = /g for u > 0.

We note that the condition Eq. (7.8) that the susceptibility diverges is nothing but the require-
ment that the occupation number of the zero energy state is a macroscopic number:

Xopor = <1/J0¢0> —N./h — —0. (7.41)

7.2.2  Superfluidity

Goldstone mode The BEC state breaks the gauge symmetry, i.e., the invariance under the trans-
formation of ¢y — we'?. The Goldstone mode is the spatial-modulation of the phase . We
introduce the transformation of the field *

W(r,7) = [pe + pr(r,7)]/2 90, (7.42)
where p. = |¢ ] The action is transformed to
Slp1, e /dr/df{ o + p +o \le +1hp37<p+ IV@I } (7.43)

/dT/dT{ 2+ L |Vp1| +ihp10-0 + —— h |V<P\ } - §h5MNc + 2mihNen,,
(7.44)

where n, is the winding number of y-field along the time direction: p(r, #3) = ¢(r,0) + 27n.,.
Summing n., enforces the quantization of ..

After completing the integral over p;, the action is transformed to

i/l

It describes a collective excitation with the dispersion

2 2
Wi = \/ngk2 + (h’“> : (7.46)
m 2m

2While the transformation looks innocent, it is actually non-trivial. This is because a functional integral is defined
by its discrete time form. A direct change of variables in the functional integral leads to a complicated discrete form.
To establish the transformation, one needs to first apply the operator transformation a = e~i¢51/2 with the commuta-
tion relation [, ] = i to the second quantized Hamiltonian of the system. The functional integral is constructed by us-
ing the Fock state p|n) = n|n) and its conjugate |¢) with (¢|n) = (2r)~1/2¢i®, which could be regarded as the ana-
logues of |z) and |p) respectively. It is then straightforward to follow the procedure shown in §3.1 and apply the identity

S ST def(@)em? = [ dp [ def(p)ele.

21.2
Ly |<,ok<r>|2]. (7.45)
m

R2E2\ !
) ol +
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Superfluidity If the condensate maintains a spatial gradient of ¢(r), the current density is
'<>—1/hﬁd o) (g (rr) Vo, 7) — [V )] 9, 7)) (7.47)
Js(r = 1B | T o Y (rT T, T T r,T .

1 hB h I
_ %/0 dr < (W’L’) ch(r)> ~ L Va(r) (7.48)

where we neglect the effect of fluctuations (7" — 0). The current density is induced by a de-
formation of the field configuration. It is analogous to the elastic force, i.e, a “momentum
current,” induced by the deformation of a solid. The current is dissipationless, and is therefore
called as SUPERCURRENT. Note that the supercurrent is proportional to the total density instead
of the condensate density in the limit of 7" — 0 [24].

Critical velocity When a BEC flows through a pipe at a uniform velocity V, an excitation in the
fluid with a wave-vector k and frequency wy has the frequency

W, =wk+k-V, (7.49)

when observed in the laboratory frame in which the pipe is stationary. Note that the system
reaches equilibrium by exchanging energy with the environment through the wall of the pipe.
As long as wj, > 0, the BEC can reach an equilibrium and keep flowing. When wj, becomes
negative, however, excitations will be spontaneously and continuously generated, until the
system is fully dissipated. This is the LANDAU CRITERION. The consideration suggests a critical

velocity
V. = min (7.50)
(%)

For the dispersion Eq. (7.46), the critical velocity V. = \/gp./m.

The critical velocity suggested by the Landau criterion should be regarded as an upper limit.
The experimentally observed critical velocity is usually much lower. It is believed that the
superfluidity is destroyed due to the excitations of vortex rings [24].

7.2.3 Bogoliubov transformation

The problem can also be treated by using the original field variables. The action Eq. (7.39) is approx-
imated as a bilinear form of +, and v;; for k # 0:

n2 |k|?

k0

2]}}15 Z [wk¢ WU Yeth_wthi? + Wi [o|?| . (7.51)

k0

The mean-field approximation sets

pe = 7 Y0%o = (7.52)

Vhﬁ

While it is straightforward to apply the Gaussian mtegral formula Eq. (1.146), we can do it ex-
plicitly:

* Rewrite the action as:

1 w2 |k| )
S 0"~ So+ 5 > ¥l o F T 9pe 9 Uy, (7.53)
k#£0 9pce W 1hwn, + om - T 9Pc
where we set ¢y = \/Vhﬁpé/ge_wm, So = —hBgNcpe/2, and
U, = { fj } . (7.54)
—k
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» Apply the BOGOLIUBOV TRANSFORMATION

| ue vp | u vy Dk
L P 7o)
Jug* = Jox|* =1 (7.56)

to diagonalize the matrix in Eq. (7.53). The second condition ensures that *9,4 is transformed
to ¢*9, ¢, i.e., the canonical structure is not changed. In the second quantization language, the
transformation preserves the commutation relations of the Boson creation and annihilation
operators. The coefficients are obtained by solving the generalized eigenvalue problem:

IE 4 gp gpce'? uy, uy,
2m ) c B2 in 2C = Esz . (757)
gpee™ ¥ Q'm' + gpc Uk Uk
It yields:
hk2\ 2
B = hwi = hiy| 2222 + () : (7.58)
m 2m
h2k2/2m+gp. +1
Yl — 25 2 : (7.59)
Uk e i h2k?/2m+gpc 1
2E 2
» The action is diagonalized to
S[h v = So+ Y (—ikw, + Ey) [éx]*. (7.60)

k0

For an equivalent treatment in the second quantization form, see §4.2 of Ref. [25].

7.3 Superconductivity

7.3.1 Introduction

Superconducting state is an ordered state of conducting electrons, which shows dissipationless con-
duction and perfect diamagnetism (Meissner effect). A comprehensive survey of the superconductiv-
ity can be found in Ref. [27]. The superfluidity of He? can be regarded as the “superconductivity”
of charge-neutral particles [28].

Bardeen-Cooper-Schrieffer (BCS) theory reveals that the superconductivity is induced by the for-
mation of COOPER PAIRS — bound pairs of electrons. Electrons pair because of the presence of
an attractive interaction at the Fermi surface.

Attractive interaction inconventional superconductorsis mediated by phonons (lattice vibrations):

» The action of an electron-phonon coupled system is

Cq+M*pq )+S W)¢]

(7.61)
where wyq is the dispersion of phonons, ¢ = (q,vm), pg = > ks VioVk+q,0> aNd Se denote
the action of electrons.

+ Complete the functional integrals over ¢, and c;:

1
S [, ", ¢, c¥] Zc ihum—i—hwq)cq—&—W?(quq

S, ¢*] = 2hﬁVZ| ql Dgp—gpq + Se [0, 47] (7.62)

1 1 1 2w
D = = _Z a_ 7.63
T iy, — hwg + —ihvy, — hwq h wg +v2 ( )
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It indicates an effective e-e interaction mediated by phonons

_|Mq‘2 2wg |Mq|2 2wq

2 1,2 2 _ 2
h wg+uv; h v —wg

Verr (g, vn) = , (7.64)

which is attractive when
wq > V| 2 |ek+q — €k| /R, (7.65)
i.e., within a thin shell of states around the Fermi surface.

» The attractive interaction mediated by phonons prevails over the repulsive Coulomb in-
teraction within the thin shell of states with an energy width ~ hwp, where wp is the
Debye frequency of phonons.

* The attractive interaction mediated by phonons is regarded as a “weak” interaction be-
cause hwp < p. Migdal’s theorem states that vertex corrections are negligible.

» The BCS theory can be demonstrated by a simplified effective model:

I:I = Z edeJde - % Z (AIL_FquT_kiCAL,k/idkuqu (766)
ko kk’q
= cwith o — % Y bl (7.67)
ko q
where R
<I>q = Z dk+qT&ka (768)
k

annihilates a pair of electrons (Cooper pair), and the summation over k is implicitly lim-
ited in the thin shell of states near the Fermi surface.

» The more realistic treatment, which is called the strong coupling theory, can be found in
§10 of Ref. [22].

* Unconventional superconductivity in such as high-T.. cuprates is also induced by the for-
mation of Cooper pairs. However, many believe that in these systems the attractive in-
teraction arises directly out of the electron-electron interaction instead of the electron-
phonon coupling.

7.3.2 Cooper instability

It is natural to expect that the Cooper pairs, which are composite Bosons, condense in the low tem-
perature. This is exactly the origin of the superconductivity. In the condensate phase, one expects
that the pair amplitude *

o(r) = (B(r)) = (Wr(r)y(r) #0. (7.69)

At the critical point, the PAIR CORRELATION FUNCTION
Yoo () = 7ﬁ (AD,AD) (7.70)
= *% %@: (bt Wk gt) = Crrar—is) (Y i qr)] (7.71)

diverges at ¢ = 0. The correlation function is proportional to the two-particle Green’s function, and
in turn to the two-particle scattering amplitude 7 by Eq. (5.49). It implies that 7 diverges at the
critical point.

3More generally, the two electrons of a Cooper pair need not to be at the exactly same position. As a result, the order
parameter should be defined as ®(r, ') = (¥ (r) (r')) With @, q = [dr [ dr'®(r, ') exp[—ik- (r—r')—ig-(r+7')/2]. A
spatially uniform order parameter (g = 0) still has a k dependence. The rotational symmetry of the k dependence is referred
as the PAIRING SYMMETRY. The special case we study here has the s-wave symmetry. High-T. cuprate superconductors have
the d-wave symmetry ®, o o cos kza—cos kya. More exotic pairing symmetries are possible. See p. 287 of Ref. [2] or Ref. [28].
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Bethe-Salpeter equation can be constructed in the particle-particle channel *:

2/ 2 2/ 2 2/ 2
_ Lt
= - ,
Iy 1 1 1 1 1
where W denotes the irreducible electron-electron interaction. For Eq. (7.70):

1= (k +q7T)7 2= (_ka\lr>7 1I = (kl + an)7 2/ = (—k’/,J,)

i (@) = Wik (@) = 575 > Wi @GR + )G (") T (0)

kll
To the lowest order, we approximate:
Wik (@) = =g, G = Go.

The BS equation can be solved:

9
Ta) =1 + 9X3e- (@)’

1 * 1 1" "
X+ (q) = T 123y (AD,ADY) = “ 25y Zgo(k‘ +q)Go(—k").

k!

(7.72)

(7.73)

(7.74)

(7.75)

(7.76)

(7.77)

Pair correlation function x%,.(q) describes how the pair amplitude of a non-interacting system re-

sponses to an external pairing potential which couples to the system by the action

Sa = /dT/d’I" [D (r7)A(rT) + O(rT) A (r7)].

Itisthe “Lindhard function” for the pair correlation function.

b

1 Z 1-f (§k+q/2) —f (ﬁk—q/2)

0
X «\gyVm) = p
*o ( ) In% 5 Wy — §k+q/2 - 6k—q/2

where & = (ex — p)/h. Note that v, is the bosonic Matsubara frequency.

hwp tanh 2¢
X%q,*(0,0) ~~ —Nl(O)/ de 7 2

—th

-
~ —N;(0)1In (khﬁwD> ,
7r

where N;(0) = N(0)/2 is the density of states at the Fermi surface per spin specie.

Long-wavelength expansion For small |q],

7¢(3)
4872

oo (2.0) % 1% (0,0) + [ } N1 (0)(hBor)? gl

Cooper instability The scattering amplitude diverges when

1 2e7
PRAC) =1In (WhﬁwD> .

It predicts a phase transition at
2¢7 —1/N1 (0 Z1/N: (0
kpT. = = hwpe /N0 ~ 1. 13hwpe~ /N1 (09,
™

T, is the SUPERCONDUCTING TRANSITION TEMPERATURE.

(7.78)

(7.79)

(7.80)

(7.81)

(7.82)

(7.83)

4The equation can be established by defining the effective action as a functional of the anomalous Green’s function

F(1,1) = = (¢4 (1)1 (1")). See §5.2.6 and Ref. [16].
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7.3.3 Mean field theory

Action corresponding to Eq. (7.67) is

= %:w?;a iy + k) Yro — 225 5V Z@ ®,. (7.84)

Hubbard-Stratonovich transformation For an attractive interaction, we apply Eq. (6.126). The ac-
tion is transformed to

S, 9™, A, A" = Zwkg —ihwy, + hék) Yro + Wz (P50, + DA WZ

(7.85)
It is converted to a non-interacting electron system coupled to a random pairing field.

Nambu representation For the case of a uniform A(r7) = A = |A|exp(ip), we introduce a spinor

U, — [ Yk } (7.86)
Z/J_m
The action can be rewritten as
* Tep—1 |A|2
Al ==Y UG+ mVE - (7.87)
k
-1 _ iwn — é-k: A/h
G = — (Up¥y) = — N , (7.89)
B w%+£i+A/hl2[ AR e — &

Anomalous Green’s function is the off-diagonal component of the generalized Green’s function in
the Nambu representation:

G (zr,z't) = — <TT [ (zr) O (m’T')D (7.90)
— (T [ (@r) bl @)]) = (T [br (@r) iy (@'7)])
= (7.91)
— (T [6] @n) d @]} = (T [d] (@) by @')])
Bogoliubov transformation %, ' can be diagonalized by a unitary transformation
| ue v =
k= [ n _:jk ] VU, (7.92)
Juk|* + vk |* =
It is equivalent to the eigenvalue problem
h&  —A ug | Uk
ERIREA
Ey, =/ (h&)" + AP, (7.94)
(e
uk =4[5 (1 + £, ), (7.95)
Vg = — 1 <1 — h&c)ei‘p. (7.96)
2 k



With the transformation, the action becomes

|A]®

= 3"k, (—ihw, + Ex) o + h[o’VT (7.97)

It describes Fermionic quasi-particles with gapped spectrums Ej. |A| is called the SUPERCON-
DUCTING GAP.

Partition function can be written as

1 *
Z=7— [DW.v" AL exp{ hZﬂvZ Se [, 0", A, A* ]} (7.98)
Sl 8,87 = 3 vk mwn+h§k>wka+,wiv2(¢;Aq+q>qA;), (7.99)
q
. 1 1
ZAOE/D[AA ] exp [—m;gmq?}. (7.100)

* We can integrate out ¢, ¢*:

z= 5 [Diaates [— v g 1| [ Pbew {-gse v aa)
(7.101)
- ZLAO DA, A"] exp{—h2ﬂv zq:;mqﬁ +W[A,A*]}, (7.102)
WA, A*] = InZ., (7.103)
7z, = /D [, "] exp {_;se [z/),z/J*,A,A*}} . (7.104)
» The Landau functional can be defined as
= 7255 621/ Z WA, A7]. (7.105)

Mean-field approximation is the stationary phase approximation: §£/6A} = 0. Differentiating
the Landau functional with respect to a uniform A = A,—,/h3V, we have

e ;V(W, (7.106)
WS- [oww? exp{—,lise [w,¢*,A7A*]} (7.107)
= = (@,0) ;_sz: am (7.108)
Therefore, the self-consistent equation for determining A is
g hgﬁv Z +§k YN ( )/Oh‘”D de@ (7.109)

Je AR

» The equation is reduced to Eq. (7.80) when T' = T,., A = 0.
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* It can also determine the temperature dependence of the superconducting gap:

A(0) — \/27A(0)kpTe 2O/ksT T <« T,
A(T 1/2 1/2 . (7.110)
AT w[%@)} kpT, (1—%) T,-T<T.
AO)
vkl ~ 1.76. (7.111)

Note that the ratio between the zero-temperature gap and the critical temperature is a
universal constant —a unique prediction of the weak-coupling BCS theory.

Thermodynamic properties The Landau functional with respect to the mean-field uniform A is
the mean-field grand potential Qg of a superconducting system. According to Eq. (7.97), a su-
perconducting system is equivalent to a non-interacting Fermion system with the dispersion
Eq. (7.94). We thus have :

QA - Q0 AP 4N, (0) /”MD 1+e PP
= — de |In ———— 7.112
V g ﬁ o € |in 1 + “Be + B( ) ) ( )
th 2
= —N1(0) 1 AP [1+1n A0 + é/ deln (1 + e PF) — —2 , (7.113)
2 B Jo 3
~MOAZ(0) 4+ 122Ny (0) (ksT)® T — 0
~ . 2y 2 : (7.114)
—lgNiO) (rheT)* 3 (1= &) T
where E = \/e2 + |A].
* The CRITICAL FIELD of a superconductor is determined by
H? Qs — Qo
£ =— . 7.115
8T Vv ( )
* The specific heat has a jump at the critical point:
Cs—C 12
= = ~ 1.43. (7.116)
[ Cu L 7¢(3)

7.3.4 Effective field theory and Anderson-Higgs mechanism

Landau-Ginzburg theory One can construct an effective Landau functional from the microscopic
action. It can then be fitted into the general phase-transition theory presented in §7.1.

We seek for a classical Landau functional in the limit of ' — 7., A, — 0:

Local density approximation The zeroth order approximation to the functional is the local
density approximation:

SLpa [A, A% =~ hﬁ/ ['A(V))_QO} . (7.117)

One can then expand the functional to arbitrary orders of |A(r)[>.

Gradient correction To obtain the gradient correction, we expand W [A, A*] as a power series
of |A,|%. To the second order:

W [A, A¥] hﬁv wa ) 1A (7.118)

In the static limit A, = #5A40,,, 0, we apply Eq. (7.81) and obtain
i ~ N1(0) 2¢7 7¢(3) 2 2
WA, AT~ = Z{l (fw D) - [48772 (hBur)? |q|” ¢ |Agl® . (7.119)

q
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The gradient correction can then be identified.
Adding the gradient correction to Sipa, We obtain

+ . BBN1(0) T 7¢(3) 2 2
SIA A~ = zq: {mTC + [487T2 (hBur)? |q|” ¢ |Agl® + ... (7.120)
T 7¢(3
<nni0) [ar{ (i 1) 80P + [ toer? 9809 51201}
(7.121)
where Sy p, is expanded to the order of |A(r)|*, and b can be fixed by Eq. (7.110):
_[7CB) ] a2
b= {167#} B°. (7.122)
Landau-Ginzburg functional One definesa “wave function”
_ [7¢(3)p0]"* Alr)
F(r)= = } Tl (7.123)
The Landau-Ginzburg functional is defined by
o SIA, A
L[F,F*| = g (7.124)
N h2 s (kgT)’ [( T | A
R /dr{4m|VF(r)| +a p— [(Tc — 1) |[F(r)] +2—po|F(r)| ] , (7.125)
672
= ~ 7.04. (7.126)
e

In the presence of a magnetic field, the gradient operator should be replaced with V —
V + (i2¢/hc) A because of the gauge symmetry (see next).

Quantum effect is suppressed when T' — T,. This is a result of the diverging coefficients
of the expansion of x4 (g, V) With respect to vy,.

Gauge symmetry With the Nambu representation, the action Eq. (7.85) can be written as

" ) A(rr))?
S, ", A A% A, p] = / dT/dr —hUt (rn)G 10 (rr) + —— |, (7.127)
0 g
g1 _ 1| —ho, = 3k (<ihV + £A)" —ieg +p A(r)
h A*(r7) —h0; + 5= (—ihV—2A)° tiep —p |
(7.128)

where we couple the system to an Euclidean electromagnetic (EM) field (i¢, A) °.
 The action is invariant under a global U(1) gauge transformation
A (r7) = A(rT) €%, (7.129)
U(rr) — exp (i%?g)\lf(rr). (7.130)

As aresult, the degenerate states of a superconductor are defined by the U(1) phase angles
of the order parameter. A Goldstone mode is expected.

5Note that in the Euclidean space-time, the scalar component of the electromagnetic field is imaginary.
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« Itis also invariant under the local U (1) gauge transformation

A(r7) — A(rr) e?7), (7.131)
T(rr) — exp {i‘f’(’;) %3} T(rr), (7.132)
B(rm) > 6(rm) — 5-Orp(r), (7133)
A(rr) = A(rr) — %v¢(r7). (7.134)

* As a result, a superconductor couples to the EM field only through
= h
¢(r7) = ¢(r7) + 5 Orp(r), (7.135)

A(rt) = A(rT) + Z—;Vgo(r’r). (7.136)

Supercurrent The electric current density is defined by °

) ieh -
; — _ T _ =
Jm = e sy =g (? V) < < ) A(rr), (7.137)
PR (k+ D) wlerrowy, - s A, (7.138)
m % mc
The response of the electric current density to A is
Js(r) = /drK r—r)A(r') (7.139)
K(r—p') = — —S/h) 7.140
v M@ﬂ(Z/[w¢]() - 7140
= (5 [ oW+ i) - o ) G| )|
Z 54 TRt e J o
(7.141)
e (p) 1 , .
Kq= |- e dg,0 + W2eBy ((AJq) (AJ—q)) 40| > (7.142)
Superfluid density is defined by the response function at g — 0. By applying Wick’s theorem,
we have
62
Kq_>0 = —*ﬂs (7143)
2 h2 |k|? 41 (hwy)? — E2
=po+ 5 Tr (% %:] = —— + hég) ———
ps = po WVZ r (G %) = po — Mvzkj(u &) [(hwn)2+E,§r
(7.144)
__ BuN(0) / ) 1 1= 21BA0)e 2O T 0
Tl T B T P 2(1- F) TST,
(7.145)
The supercurrent response at ¢ — 0 is
s = _ﬂps (V(p + 26,4) . (7.146)
2m he

It is analogous to Eq. (7.48). The response is called the JOSEPHSON EFFECT. See §5.2 of
Ref. [21] for a treatment of the effect.

6Note that the equal-time production like ¥ (»7)®¥(r7) should be properly interpreted: to define the physical current,
w% » should always have a time infinitesimally ahead that of 4(y).
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Effective action of the Goldstone mode must have a form consistent with all the symmetries of
the original microscopic model, including the local gauge symmetry. In the long-wavelength
limit, we have

2

S [, A, ¢] = /dT/dr [cl< B+ ¢> tep |2 £ (7.147)

2 he

2 i e 2

%ﬂv Z g + ¢q +e2 590 + 7oAy (7.148)

S can be obtained from S by integrating out all unwanted variables:

S AA A

Sc e, A, @] = —hln/D A, ¢, "] exp {— [, 9%, h) 4, 9] } . (7.149)

The coefficients can be related to correlation functions:

* From Eq. (7.149), we have

AN ) 1
> 3 L — = ((80,) (Bp—g)) = ~FPxpp(a).  (7:150)

c1(q) = (hBV) ( 500 =i 5pg BV

(&
where x,,(¢) is the density correlation function for the superconducting system, and p, =
S, Ulelwnn®s 2, . In the long-wavelength limit, x,,(0) ~ —N(0), we have

= (}i_% cq(q) = K2N(0). (7.151)
¢ Similarly:
he 628¢ AN
c2(q) = (hBV) ( e) SAGA . <€> “GA, (7.152)
We have already obtained its long-wavelength limit in Eq. (7.146). Therefore,

h2

co = lim ca(q) = — ps. (7.153)
q—0 m

Anderson-Higgs mechanism When the Goldstone mode is coupled to a massless (long-range) gauge
field (e.g., the EM field), it disappears and gives rise to a finite mass (short range) to the gauge
field.

* The total action for a superconductor coupled to the EM field is
Slp, A ¢ = Sq e, A, ¢ +—/d7’/dr [(w— -8, A) + |V x A|2] . (7.154)

* Since the action of the EM field is gauge-invariant, one can preform the gauge transfor-
mation Eq. (7.135,7.136). The resulting action does not depend on ¢ -the Goldstone mode
disappears!

s[4.d] - 8%/(17/(17« [(qu_ 134)2 | Al e,

12 12
A‘ +47T€2N(0)‘¢‘

(7.155)

* We can decompose A to the transverse and longitudinal components: A = AT + AL with
V-AT =0and V x A" = 0.
i

{AQNS /dr/dr[Q(aAT) +‘V><AT‘+47Tep
\ + 4we® N(0) ‘dﬂ . (7.156)

~ - 2
n —/dr/dr { vqsfc*laTAL) n 47”3
8 me?
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— The transverse component AT gains a mass. It will be screened — MEISSNER EFFECT;

— The longitudinal component of A" is coupled to the scalar field. After integrating
out AL, it gives rise a plasmon-like mode - This is what the Goldstone mode finally
becomes.

Meissner effect The magnetic field must vanish inside the bulk of a superconductor - the
perfect diamagnetism. Differentiating the action with respect to A7, we obtain

4 4me? 4dre?
VxB=-v2AT = T = T (”e Ps v2> B(r)=0.  (7.157)
C mc mc

It predicts a PENETRATION DEPTH that is A = ¢ (4me?ps /m)_l/ 2,

Problems

1. Determine the upper critical dimensions of ¢, (V)" ,and ¢ V"¢ terms in a Landau functional.

2. Determine an expression for the density-correlation function of superconductors [see Eq. (7.150)].
To simplify the calculation, one can assume SA > 1.

(a) Determine the long-wavelength limit x,,(q = 0, vy,).

(b) Determine the expansion of x,,(g = 0,v,,) in the limits of Av,, < A and hv,, > A,
respectively.

(c) Compare the result with the density response function of a normal system [Eq. (6.85)].

1 2

Hint: Mathematica is actually very good in carrying out frequency summations. Use “Sum

for the summation and “Series” for the expansion.

3. Integrating out either ¢ or A from the action Eq. (7.155). What is the dispersion of the resulting
plasmon-like mode? What is the regime of validity of the result?

4. Stoner magnetism: consider the Hubbard model Eq. (1.90). The interaction term can be rewrit-
ten as

4

3

iy = 53t + s~ U3 (57)°, (7.158)

where S7 = (n;+ — n;;)/2. One can neglect the first term. With the remaining term, develop a
mean field theory and obtain its effective Landau-Ginzburg functional. AS86.7.8
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